УДК: 535.231.62, 535.14, 535.15, 537.874.72
Infrared absorption in a multilayer bolometric structure with a thin metallic absorber
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Демьяненко М.А. Поглощение инфракрасного излучения в многослойной болометрической структуре с тонким металлическим поглотителем // Оптический журнал. 2017. Т. 84. № 1. С. 48–57.
Demiyanenko M.A. Infrared absorption in a multilayer bolometric structure with a thin metallic absorber [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 1. P. 48–57.
M. A. Dem’yanenko, "Infrared absorption in a multilayer bolometric structure with a thin metallic absorber," Journal of Optical Technology. 84(1), 34-40 (2017). https://doi.org/10.1364/JOT.84.000034
This paper presents relationships that make it possible to use the matrix method to calculate the reflectance, transmittance, and absorptance in a bolometric structure consisting of an arbitrary number of layers that include a metallic absorber and reflector. Analytic relationships are obtained that can be applied to actual bolometers—for example, fabricated on the basis of amorphous silicon, in which, besides a thin metallic absorber and reflector, there are two insulating layers (a high-resistance heat-sensitive layer and a thermally insulating layer). The relationships make it possible to take into account the imaginary component of the conduction of the metal layers and the gradual falloff of the radiation. This analysis, in particular, showed that taking into account an electron-relaxation time in the absorber equal to or greater than 10−14 s significantly alters not only the parameters of the bolometric structure but also the radiation frequency at which there is virtually complete absorption of the radiation.
bolometer, multilayer structure, absorption, infrared and terahertz radiation, thin metallic absorber
OCIS codes: 040.3060, 160.3900, 230.0040, 240.0310
References:1. E. Mottin, A. Bain, J. L. Martin, J. L. Ouvrier-Buffet, S. Bisotto, J. J. Yon, and J. L. Tissot, “Uncooled amorphous silicon technology enhancement for 25-μm pixel pitch achievement,” Proc. SPIE 4820, 200–207 (2003).
2. N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE 6940, 69402Y (2008).
3. M. A. Dem’yanenko, D. G. Esaev, V. N. Ovsyuk, B. I. Fomin, A. L. Aseev, B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, “Microbolometer detector arrays for the infrared and terahertz ranges,” J. Opt. Technol. 76(12), 739–743 (2009) [Opt. Zh. 76(12), 5–11 (2009)].
4. L. N. Hadley and D. M. Dennison, “Reflection and transmission interference filters. Part I. Theory,” J. Opt. Soc. Am. 37(6), 451–465 (1947).
5. C. Hilsum, “Infrared absorption of thin metal films,” J. Opt. Soc. Am. 44(3), 188–191 (1954).
6. C. Hilsum, “Infrared absorption of thin metal films at non-normal incidence,” J. Opt. Soc. Am. 45(2), 135–136 (1955).
7. P. A. Silberg, “Infrared absorption of three-layer films,” J. Opt. Soc. Am. 47(7), 575–578 (1957).
8. K. C. Liddiard, “Application of interferometric enhancement to self-absorbing thin film thermal IR detectors,” Infrared Phys. 34(4), 379–387 (1993).
9. J. J. Monzón and L. L. Sánchez-Soto, “Optical performance of absorber structures for thermal detectors,” Appl. Opt. 33(22), 5137–5141 (1994).
10. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, Oxford, 1965; Nauka, Moscow, 1973).
11. M. Ruß, J. Bauer, and H. Vogt, “The geometric design of microbolometer elements for uncooled focal plane arrays,” Proc. SPIE 6542, 654223 (2007).
12. J. M. Camacho and A. I. Oliva, “Morphology and electrical resistivity of metallic nanostructures,” Microelectron. J. 36(3–6), 555–558 (2005).
13. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1199 (1983).