DOI: 10.17586/1023-5086-2018-85-10-08-16
Analysis of aiming performance limitation for optical system in atmospheric turbulence
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Xiaowei Ye, Feng Shen Analysis of aiming performance limitation for optical system in atmospheric turbulence (Анализ ограничений на точность сопровождения объекта оптическими системами в турбулентной атмосфере) [на англ. яз.] // Оптический журнал. 2018. Т. 85. № 10. С. 8–16. http://doi.org/10.17586/1023-5086-2018-85-10-08-16
Xiaowei Ye, Feng Shen Analysis of aiming performance limitation for optical system in atmospheric turbulence (Анализ ограничений на точность сопровождения объекта оптическими системами в турбулентной атмосфере) [in English] // Opticheskii Zhurnal. 2018. V. 85. № 10. P. 8–16. http://doi.org/10.17586/1023-5086-2018-85-10-08-16
Xiaowei Ye and Feng Shen, "Analysis of aiming performance limitation for an optical system in atmospheric turbulence," Journal of Optical Technology. 85(10), 603-609 (2018). https://doi.org/10.1364/JOT.85.000603
In optical system that transmitting laser beam through atmosphere by phase compensation with adaptive optics, the aiming performance depends on the method of wave-front tilt detection which can be divided into Zernike tilt detection and gradient tilt detection. A unified formulation for the both two methods is obtained to calculate the residual tilt angle jitter and tilt correction factor which are defined as the evaluation indexes of aiming performance. A parameter L0 named equivalent atmospheric coherence length is expressed as an integral over the structure constant profile of refraction index and is modulated by a modulation function which is determined by the ratio of offset distance to aperture. As a result, tilt correction factor can be briefed as (r0/L0)5/6, where r0 is the atmospheric coherence length. Simulations illustrate that the aiming performance of optical system based on gradient tilt detection is better than that of Zernike tilt detection under identical condition. For the systems of two types, aiming performance will be decreased as the increase of ratio of offset distance to aperture and the worsening of atmospheric condition.
laser communication, atmospheric turbulence, tilt detection method; equivalent atmospheric coherence length, tilt correction factor
Acknowledgements:OCIS codes: 060.4510, 010.1300, 030.7060
References:1. Tatarski V.I. Wave propagation in a turbulent media. New York: McGraw-Hill Book company Inc., 1961. 196 p.
2. Andrew L., Phillips R.L. Laser beam propagation through random media. Bellinghan: SPIE Press, 1998. 442 p.
3. Zou L., Wang L. Turbulence mitigation scheme based on spatial diversity inorbital-angular-momentum multiplexed system // Opt. Commun. 2017. V. 400. P. 123–127.
4. Babcock H.W. The possibility of compensating astronomical seeing // PASP. 1953. V. 65 (386). P. 229–236.
5. Hardy J.W. Active optics: a new technology for the control of light // IEEE Commun. Mag. 1978. V. 66(6). P. 651–697.
6. Rigaut F., Rousset G., Kern P., Fontanella J.G., Gaffard J.P., Merkle F., Lena P. Adaptive optics on a 3.6-m telescope – results and performance // Astron. Astrophys. 1991. V. 250(1). P. 280–290.
7. Rousset G., Fontanella J.G., Kern P., Gian P., Rigaut F., Lena P., Boyer C., Jagourel P., Gaffard J.P., Merkle F. First diffraction-limited astronomical images with adaptive optics // Astron. Astrophys. 1990. V. 39(3). P. 193–202.
8. Fried D.L. Statistics of a geometric representation of wave front distortion // J. Opt. Soc. Am. 1965. V. 55 (11). P. 1427–1435.
9. Fried D.L. Optical resolution through a randimly inhomogeneous medium for very long and very short exposures // J. Opt. Soc. Am. 1966. V. 56(10). P. 1372–1379.
10. Fried D.L. Anisoplanatism in adaptive optics // J. Opt. Soc. Am. 1982. V. 72(1). P. 52–61.
11. Sasiela R.J. Strehl ratios with various types of anisoplanatism // J. Opt. Soc. Am. A. 1992. V. 8. P. 1398–1405.
12. Clenet Y., Gendron E., Gratadour D., Rousset G., Vidal F. Anisoplanatism effect on the E-ELT SCAO point spread function. A preserved coherent core across the field // Astron. Astrophys. 2015. V. 58. P. A102.
13. Fried D.L. Focus anisoplanatism in the limit of infinitely many artificial-guide-star reference spots // J. Opt. Soc. Am. 1995. V. 12(5). P. 229–244.
14. Molodij G., Rayrole J. Performance analysis for T.H.E.M.I.S image stabilizer optical system // Astron. Astrophys. suppl. ser. 1997. V. 128(199). P. 229–244.
15. Biling Zhang, Yonggen Xu, Youquan Dan, Xueru Deng, Zhengquan Zhao. Beam spreading and M2-factor of electromagnetic Gaussian Schell-model beam propagating in inhomogeneous atmospheric turbulence // Optik. 2017. V. 149. P. 398–408.
16. Guoqing Yang, Lisheng Liu, Zhenhua Jiang, Jin Guo, Tingfeng Wang. The effect of beam quality factor for the laser beam propagation through turbulrnce // Optik. 2018. V. 156. P. 148–154.
17. Noll R.J. Zernike polynomials and atmospheric turbulence // J. Opt. Soc. Am. 1976. V. 66(3). P. 207–211.
18. Sasiela R.J., Shelton J.D. Transverse spectral filtering and Mellin transform techniques applied to the effect of outer scale on tilt and tilt anisoplanatism // J. Opt. Soc. Am. 1993. V. 10(4). P. 646–660.
19. Sasiela R.J., Shelton J.D. Mellin transform methods applied to integral evaluation: Taylor series and asymptotic approximations // J. Math. Phys. 1993. V. 34(6). P. 2572–2617.
20. Wong R. Asymptotic approximations of integrals. Beijing: SIAM, 2001. 552 p.
21. Fried D.L., Belsher J.F. Analysis of fundamental limits to artificial-guide-star adaptive-optics-system performance for artronomical imaging // J. Opt. Soc. Am. A. 1994. V. 11(1). P. 277–281.
22. Mainardi F., Pagnini G. Salvatore Princherle: The pioneer of the Mellin–Barnes integrals // J. Comput. Appl. Math. 2003. V. 153(1–2). P. 331–342.
23. Valley G.C. Isoplanatic degradation of tilt correction and short-term imaging systems // Appl. Opt. 1980. V. 19(4). P. 574–577.
24. Sasiela R.J. Electromagnetic wave propagation in turbulence. Washington: SPIE Press, 2007. 366 p.