ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-11-19-28

УДК: 535.8

Superstrong light (achievements and prospects)

For Russian citation (Opticheskii Zhurnal):

Андреев А.А. Сверхсильный свет (достижения и перспективы) // Оптический журнал. 2018. Т. 85. № 11. С. 19–28. http://doi.org/10.17586/1023-5086-2018-85-11-19-28

 

Andreev A.A. Superstrong light (achievements and prospects) [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 11. P. 19–28. http://doi.org/10.17586/1023-5086-2018-85-11-19-28

For citation (Journal of Optical Technology):

A. A. Andreev, "Superstrong light (achievements and prospects)," Journal of Optical Technology. 85(11), 671-678 (2018). https://doi.org/10.1364/JOT.85.000671

Abstract:

A review of the production of extreme-power supershort laser pulses and their applications for the interaction of superstrong light fields with matter is presented. The main issues with, and the possibility of, creating pulses with multipetawatt peak power using linear and nonlinear compression are considered. A prediction is made regarding the future use of such laser systems.

Keywords:

power supershort laser pulses, laser pulses compression, interaction of superstrong light fields with matter

OCIS codes: 140.7090, 270.6620, 290.5830, 320.5520, 350.5400

References:

1. A. A. Mak, L. N. Soms, V. A. Fromzel’, and V. E. Yashin, Neodymium Glass Lasers (Nauka, Moscow, 1990).
2. P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of superhigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
3. A. A. Andreev, A. A. Mack, and V. E. Yashin, “Generation and applications of utlrastrong laser fields,” Quantum Electron. 27, 95–114 (1997) [Kvant. Elektron. 24, 99–110 (1997)].
4. A. A. Andreev, A. I. Zapysov, A. V. Charukhchev, and V. E. Yashin, “Generation of X-rays and fast particles by high-intensity laser pulses,” Izv. Akad. Nauk SSSR Ser. Fiz. 63, 1239–1249 (1999).
5. G. A. Mourou, C. P. J. Barty, and M. D. Perry, “Ultrahigh-intensity laser pulses: physics of the extreme on a tabletop,” Phys. Today 51(1), 22–28 (1998).
6. A. A. Andreev, Generation and Application of Ultra-high Laser Fields (NOVA Science Publishers, New York, 2001).
7. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
8. A. A. Mak and V. E. Yashin, “On the possibility of compressing high-energy laser pulses in a compressor based on a quasi-periodic system of nonlinear elements and a dispersive medium,” Opt. Spektrosk. 70(1), 3–5 (1991).
9. G. Mourou and T. Tajima, “More intense, shorter pulses,” Science 331, 41–42 (2011).
10. G. Mourou, N. Fisch, V. Malkin, Z. Toroker, E. Khazanov, A. Sergeev, T. Tajima, and B. Le Garrec, “Exawatt-zetawatt pulse generation and applications,” Opt. Commun. 285, 720–724 (2012).
11. I. V. Golubenko and A. A. Andreev, “How mismatches of the grating segments of an optical compressor affect the width of a compressed pulse,” J. Opt. Technol. 76(11), 702–707 (2009) [Opt. Zh. 76(11), 38–45 (2009)].
12. A. V. Gitin and A. A. Andreev, “Pulse width in the spatial chirp of a two-grating delay line,” J. Opt. Technol. 78(10), 651–658 (2011) [Opt. Zh. 78(10), 20–24 (2011)].
13. A. A. Andreev, V. D. Vinokurova, and A. N. Shatsev, “Optimization of radiation tolerance of diffraction gratings using numerical modeling,” Opt. Spectrosc. 85, 259–263 (1998).
14. Y. Ping, W. Cheng, S. Suckewer, D. Clark, and N. Fisch, “Amplification of supershort laser pulses by a resonant Raman scheme in a gas-jet plasma,” Phys. Rev. Lett. 92, 175007 (2004).
15. R. Trines, F. Fiúza, and R. Bingham, “Simulations of efficient Raman amplification into the multipetawatt regime,” Nat. Phys. 7(1), 87–92 (2011).
16. A. A. Andreev, V. G. Bespalov, E. V. Ermolaeva, and R. R. E. Salomaa, “Compression of superpowerful laser pulses in inhomogeneous plasma,” Opt. Spectrosc. 102(1), 98–105 (2007).
17. S. K. Mishra and A. Andreev, “Amplification of ultra-short laser pulses via resonant backward Raman amplification in plasma,” Phys. Plasmas 23, 083108 (2016).
18. S. K. Mishra and A. Andreev, “Scaling for ultrashort pulse amplification in plasma via backward Raman amplification scheme operating in the short wavelength regime,” J. Opt. Soc. Am. B 35(4), A56–A66 (2018).
19. A. A. Andreev and A. N. Sutyagin, “Feasibility of optical pulse compression by stimulated Brillouin scattering in a plasma,” Sov. J. Quantum Electron. 19, 2457–2466 (1989) [Kvant. Elektron. 16, 2457–2466 (1989)].
20. A. Andreev, S. Weber, K. Riconda, and V. Tikhonchuk, “Short light pulse amplification and compression by SMBS in plasmas in the strong coupling regime,” Phys. Plasmas 13, 053110 (2006).
21. A. A. Andreev, A. A. Betin, O. V. Mitropolsky, and A. N. Shatsev, “Influence of plasma heating by laser radiation on the process of SMBS,” Zh. Eksp. Teor. Fiz. 92(5), 1636–1647 (1987).
22. A. A. Andreev and V. T. Tikhonchuk, “The effect of trapped particles on the SMBS process,” Zh. Eksp. Teor. Fiz. 94, 1962–1967 (1989).
23. V. Kmetik, H. Fedorovicz, and A. Andreev, “Reliable stimulated Brillouin scattering compression of Nd:YAG laser pulses with liquid fluorocarbon for long time operation at 10 Hz,” Appl. Opt. 37, 7085–7089 (1999).
24. A. A. Andreev, A. L. Galkin, M. P. Kalashnikov, V. V. Korobkin, M. Y. Romanovski, and O. B. Shiryaev, “Electrons in a relativistic-intense laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons,” Quantum Electron. 41, 729–734 (2011).
25. A. A. Andreev and K. Y. Platonov, “X-ray generation by fast electrons propagating in nanowires irradiated by a short laser pulse with relativistic intensity,” Quantum Electron. 46(2), 109–118 (2016).
26. A. A. Andreev, “Relativistic nano-plasma photonics,” in Progress in Photon Science, K. Yamanouchi, ed., Springer Series in Chemical Physics, vol. 115 (2017), pp. 5–16.
27. Z. Lecz and A. Andreev, “Bright synchrotron radiation from nanoforest target,” Phys. Plasmas 24, 033113 (2017).
28. M. Ivanov and F. Krausz, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
29. L. M. Gorbunov, “Laser methods for accelerating particles in a plasma,” Nature 5, 15–23 (1988).
30. A. A. Andreev, V. E. Yashin, and A. V. Charukhchev, “Generation of hard x-rays and fast particles by multiterawatt laser pulses,” Usp. Fiz. Nauk 169, 72–78 (1999).
31. A. Andreev, “Theory of laser-overdense plasma interaction,” in Laser-Plasma Interactions and Applications, Springer Scottish Graduate Series (2013), pp. 5–15.
32. W. Leemans, B. Nagler, A. Gonsalves, C. Tóth, K. Nakamura, C. Geddes, E. Esarey, C. Schroeder, and S. Hooker, “GeV electron beams from a centimetre-scale accelerator,” Nat. Phys. 2, 696–699 (2006).
33. W. Leemans, A. Gonsalves, H. Mao, K. Nakamura, C. Benedetti, C. Schroeder, C. Tóth, C. Daniels, D. Mittelberger, S. Bulanov, J. Vay, C. Geddes, and E. Esarey, “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113, 245002 (2014).
34. V. Komarov, A. Charukhchev, A. Andreev, and K. Platonov, “The influence of the shape of a laser spot on the spatial distribution of an ion bunch accelerated in a superstrong field,” Quantum Electron. 44(12), 1104–1108 (2014).
35. A. A. Andreev, V. A. Komarov, K. Yu. Platonov, and A. V. Charukhchev, “Laser plasma ionography,” Opt. Spectrosc. 119(5), 789–798 (2015) [Opt. Spektrosk. 119(5), 765–775].
36. P. Lebedew, “Untersuchungen über die Druckkräfte des Lichtes,” Ann. Phys. 311(11), 433–458 (1901).
37. S. Ter-Avetisyan, A. Andreev, K. Platonov, J. Sung, S. Lee, H. Lee, J. Yoo, P. Singh, H. Ahmed, C. Scullion, K. Kakolee, T. Jeong, P. Hadjisolomou, and M. Borghesi, “Surface modulation and back reflection from foil target at an oblique incidence of petawatt femtosecond laser pulse,” Opt. Express 24(24), 28104–28112 (2016).
38. A. A. Andreev, K. Y. Platonov, V. I. Chestnov, and A. E. Petrov, “Dynamics of ultrathin laser targets with optimal parameters,” Opt. Spectrosc. 117(2), 276–286 (2014) [Opt. Spektrosk. 117(2), 287–297 (2014)].
39. S. Bulanov, T. Esirkepov, M. Kando, A. Pirozhkov, and N. Rozanov, “Relativistic mirrors in a plasma: new results and prospects,” Usp. Fiz. Nauk 183, 449–486 (2013).
40. A. A. Andreev and K. Y. Platonov, “Interaction of a high-intensity ultrashort laser pulse with extended nanofilaments of dense plasma,” Opt. Spectrosc. 117, 287–303 (2014) [Opt. Spektrosk. 117, 298–314 (2014)].

41. A. A. Andreev and K. Y. Platonov, “X-ray generation by fast electrons propagating in nanofibers irradiated by a laser pulse of relativistic intensity,” Quantum Electron. 46, 109–118 (2016).
42. A. Andreev and K. Platonov, “Generation, transport, and focusing of fast electrons in nanofilaments of a target irradiated by a short laser pulse with ultrarelativistic intensity,” JETP Lett. 98(12), 790–795 (2013).
43. V. I. Ritus, “Quantum effects of the interaction of elementary particles with an intense electromagnetic field,” in Quantum Electrodynamics of Phenomena in an Intense Field (Trudy FIAN, 111) (Nauka, Moscow, 1979), pp. 5–151.
44. N. N. Rozanov, “Self-action of intense electromagnetic radiation in an electron-positron vacuum,” J. Exp. Theor. Phys. 86(2), 284–288 (1998) [Zh. Eksp. Teor. Fiz. 113(2), 513–520 (1998)].
45. A. Di Piazza, C. Müller, K. Hatsagortsyan, and C. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84, 1177–1228 (2012).
46. A. Bell and J. Kirk, “Possibility of prolific pair production with high-power lasers,” Phys. Rev. Lett. 101, 200403 (2008).
47. M. Jirka, O. Klimo, M. Vranic, S. Weber, and G. Korn, “QED cascade with 10 PW-class lasers,” Sci. Rep. 7, 15302–15309 (2017).
48. A. Andreev, Y. Pismak, G. Labzovsky, and V. Markov, “QED in strong external field: calculation of nonlinear effects by means of proper time method,” Int. J. Mod. Phys. A19, 1–19 (2004).
49. M. Kalashnikov, A. Andreev, K. Ivanov, and A. Galkin, “Diagnostics of peak laser intensity based on the measurement of energy of electrons emitted from laser focal region,” Laser Part. Beams 33, 361–366 (2015).