DOI: 10.17586/1023-5086-2018-85-03-12-18
УДК: 543.424.2, 616.71-003.93
Experimental studies of hydroxyapatite by Raman spectroscopy
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Тимченко П.Е., Тимченко Е.В., Писарева Е.В., Власов М.Ю., Волова Л.Т., Фролов О.О., Калимуллина А.Р. Экспериментальные исследования гидроксиапатита методом спектроскопии комбинационного рассеяния // Оптический журнал. 2018. Т. 85. № 3. С. 12–18. http://doi.org/10.17586/1023-5086-2018-85-03-12-18
Timchenko P.E., Timchenko E.V., Pisareva E.V., Vlasov M.Yu., Volova L.T., Frolov O.O., Kalimullina A.R. Experimental studies of hydroxyapatite by Raman spectroscopy [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 3. P. 12–18. http://doi.org/10.17586/1023-5086-2018-85-03-12-18
P. E. Timchenko, E. V. Timchenko, E. V. Pisareva, M. Yu. Vlasov, L. T. Volova, O. O. Frolov, and A. R. Kalimullina, "Experimental studies of hydroxyapatite by Raman spectroscopy," Journal of Optical Technology. 85(3), 130-135 (2018). https://doi.org/10.1364/JOT.85.000130
This paper presents the results of Raman spectroscopy studies of 59 samples of hydroxyapatite produced from different types of bone tissue of a ram, cow, turkey, duck, and goose by isolation from solution during demineralization. The features of the Raman spectra of hydroxyapatite powders obtained from cancellous bone tissue with different degrees of demineralization and thermal processing are revealed. Coefficients are proposed that allow the estimation of the ratios of the decrease in the content of mineral components in the process of demineralization and the decomposition of organic substances under thermal action.
Raman spectroscopy, optical coefficients, hydroxyapatite, demineralization
Acknowledgements:The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka).
OCIS codes: 300.6450, 160.1435, 170.6510
References:1. L. C. Junqueira and J. Carneiro, Basic Histology, 10th ed. (McGraw-Hill, New York, 2003).
2. E. N. Bulanov, Fabrication and Research of Nanostructured Biocompatible Materials Based on Hydroxyapatite (Nizhniı˘ Novgorod State University, Nizhniı˘ Novgorod, 2012).
3. A. I. Volozhin, “Some achievements in the creation of synthetic substitutes for bone tissue,” in Abstracts of International Scientific and Practical Work of the Conference Achievements and Prospects of Dentistry, vol. 12 (1999), pp. 7–10.
4. A. I. Volozhin and V. S. Agapov, “Osteoplastic efficacy of various forms of hydroxyapatite according to experimental morphological study,” Stomatologiya 79(3), 4–15 (2000).
5. K. I. Jeong, “Experimental study of osseointegration and stability of intentionally exposed hydroxyapatite coating implants,” J. Korean Maxillofac. Reconstr. Surg. 34(1), 12–16 (2012).
6. M. Jarcho, “Calcium phosphate ceramics as hard tissue prosthetic,” Clin. Orthop. Relat. Res. 157, 259–278 (1981).
7. A. A. Klein, “Biodegradation behavior of various calcium phosphates,” J. Biomater. 17(5), 769–784 (1983).
8. U. Ripamonti and A. H. Reddi, “Tissue engineering, morphogenesis, and regeneration of the periodontal tissues by bone morphogenetic proteins,” Crit. Rev. Oral Biol. Med. 8, 154–163 (1997).
9. A. A. Al’-Zubaı˘di, “Investigation of the physico-chemical properties of metal-substituted nanocrystalline calcium-deficient hydroxyapatite,” Author’s abstract of Ph.D. dissertation (Voronezh, 2014).
10. G. N. Berchenko, “Bone grafts in traumatology and orthopedics,” Biomater. 9(4), 3–8 (2008).
11. P. E. Timchenko, V. P. Zakharov, L. T. Volova, V. V. Boltovskay, and E. V. Timchenko, “Diagnostics of bone implants and control of their osteointegration with a method of confocal microscopy,” Comput. Opt. 35(2), 183–187 (2011).
12. D. V. Kiseleva, “Application of Raman microspectroscopy to study the structural features of biogenic apatite,” Yearbook-2009, Works of the Institute of Geology and Geochemistry, Ural Branch of Russian Academy of Sciences (157), 332–335 (2010).
13. E. V. Timchenko, P. E. Timchenko, L. A. Taskina, L. T. Volova, M. N. Miljakova, and N. A. Maksimenko, “Using Raman spectroscopy to estimate the demineralization of bone transplants during preparation,” J. Opt. Technol. 82(3), 153–157 (2015) [J. Opt. Technol. 82(3), 30–36 (2015)].
14. J. W. Ager III, R. K. Nalla, G. Balooch, G. Kim, M. Pugach, S. Habelitz, G. W. Marshall, J. H. Kinney, and R. O’Ritchie, “On the increasing fragility of human teeth with age: a deep-UV resonance Raman study,” J. Bone Miner. Res. 21(12), 1879–1887 (2006).
15. I. Ionita, “Diagnosis of tooth decay using polarized micro-Raman confocal spectroscopy,” Rep. Phys. 61, 567–574 (2009).
16. G. Pezzotti, “Raman piezo-spectroscopic analysis of natural and synthetic biomaterials,” Anal. Bioanal. Chem. 381, 577–590 (2005).
17. M. T. Kirchner, H. G. M. Edwards, D. Lucy, and A. M. Polland, “Ancient and modern specimens of human teeth: a Fourier transform Raman spectroscopic study,” J. Raman Spectrosc. 28, 171–178 (1997).
18. A. L. Boskey and R. Mendelsohn, “Infrared spectroscopic characterization of mineralized tissues,” Vib. Spectrosc. 38, 107–114 (2005).
19. E. Landi, A. Tampieri, G. Celotti, R. Langenati, M. Sandri, and S. Sprio, “Nucleation of biomimetic apatite in synthetic body fluids: dense and porous scaffold development,” Biomater. 26(16), 2835–2845 (2005).
20. U. Wehrmeister, D. E. Jacob, A. L. Soldati, N. Loges, T. Häger, and W. Hofmeister, “Amorphous, nano-crystalline and crystalline calcium carbonates in biological materials,” J. Raman Spectrosc. 42(5), 926–935 (2011).
21. P. E. Timchenko, E. V. Timchenko, E. V. Pisareva, M. Yu. Vlasov, and N. A. Red’kin, and. O. O. Frolov, “Spectral analysis of allogeneic hydroxyapatite powders,” J. Phys.: Conf. Ser. 784(1), 012060 (2017).
22. V. V. Starikov, “Optimization of the properties of a composite based on hydroxyapatite and chitosan by varying its composition and heat treatment regimes,” Vestn. KhNU Fiz. Cep. 14, 35–39 (2010).
23. E. V. Timchenko, P. E. Timchenko, L. T. Volova, S. V. Pershutkina, and P. Y. Shalkovsky, “Optical analysis of aortic implants,” Opt. Mem. Neural Netw. 25(3), 192–197 (2016).
24. R. Ramakrishnaiah, G. ur Rehman, S. Basavarajappa, A. A. Al Khuraif, B. H. Durgesh, A. S. Khan, and I. ur Rehman, “Applications of Raman spectroscopy in dentistry: analysis of tooth structure,” Appl. Spectrosc. Rev. 50(4), 332–350 (2015).
25. T. V. Pavlova and T. Yu. Bavykina, “Modern concept of osteoinductive mechanisms of bone tissue regeneration,” Sovrem. Nauk. Tekhnol. 12, 15–18 (2009).
26. T. P. Vavilova, Biochemistry of Tissues and Fluids of the Oral Cavity, 2nd ed. (GEOTAR-Media, Moscow, 2008).
27. E. V. Timchenko, P. E. Timchenko, L. T. Volova, Yu. V. Ponomareva, and L. A. Taskina, “Raman spectroscopy of the organic and mineral structure of bone grafts,” Quantum Electron. 44(7), 696–699 (2014).
28. E. R. C. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res. 20(11), 1968–1972 (2005).
29. Yu. A. Ippolitov, A. N. Lukin, and P. V. Seredin, “Investigations by the method of infrared spectromicroscopy using synchrotron radiation of enamel and dentin of the human tooth that are intact and those with caries lesions,” Vestn. Nov. Med. Tekhnol. 19(2), 343 (2012).
30. S. N. Danilchenko, A. V. Koropov, I. Yu. Protsenko, B. Sulkio-Cleff, and L. F. Sukhodub, “Thermal behavior of biogenic apatite crystals in bone: an X-ray diffraction study,” Cryst. Res. Technol. 41(3), 268–275 (2006).