ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-10-77-82

УДК: 544.023.2

Effect of the amount of argon in an oxygen ion beam on the optical characteristics of titanium dioxide films obtained via ion-assisted electron beam evaporation

For Russian citation (Opticheskii Zhurnal):

Козырев А.А., Лебедев А.Д. Влияние количества аргона в ионном пучке кислорода на оптические характеристики плёнок диоксида титана, полученных методом электронно-лучевого испарения с ионным ассистированием // Оптический журнал. 2019. Т. 86. № 10. С. 77–82. http://doi.org/10.17586/1023-5086-2019-86-10-77-82

 

Kozyrev A.A., Lebedev A.D. Effect of the amount of argon in an oxygen ion beam on the optical characteristics of titanium dioxide films obtained via ion-assisted electron beam evaporation [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 10. P. 77–82. http://doi.org/10.17586/1023-5086-2019-86-10-77-82

For citation (Journal of Optical Technology):

A. A. Kozyrev and A. D. Lebedev, "Effect of the amount of argon in an oxygen ion beam on the optical characteristics of titanium dioxide films obtained via ion-assisted electron beam evaporation," Journal of Optical Technology. 86(10), 666-670 (2019). https://doi.org/10.1364/JOT.86.000666

Abstract:

The effect of argon in a mixture with oxygen in an ion beam on the optical characteristics of titanium dioxide (TiO2) obtained via ion-assisted electron beam evaporation in vacuum was studied. It was shown that the addition of an inert gas at a level of 20%–25% resulted in an increase in the refractive index of the resulting TiO2 coating and a decrease in the sensitivity of the spectral characteristic of the coating to the effect of the atmosphere as a result of the decrease in the film porosity. The maximum amount of argon in the mixture was determined, amounting to 26%, at which the TiO2 film had an extinction coefficient not exceeding k=0.0001.

Keywords:

titanium dioxide, ion assisting, argon

Acknowledgements:
The research was supported by the National Research Nuclear University MEPhI (02.a03.21.0005).

OCIS codes: 310.1860

References:

1. B. Fan, M. Suzuki, and K. Tang, “Ion-assisted deposition of TiO 2 /SiO 2 multilayers for mass production,” Appl. Opt. 45(7), 1461–1464 (2006).
2. Y. Wang, Y. Yang, L. Qin, C. Wang, D. Yao, Y. Liu, and L. Wang, “808 nm high-power high-efficiency GaAsP/GaInP laser bars,” Proc. SPIE 7135, 71350N (2008).
3. S. Kinoshita, T. Sakaguchi, T. Odagawa, and K. Iga, “GaAlAs/GaAs surface emitting laser with high reflective TiO 2 /SiO 2 multilayer Bragg reflector,” Jpn. J. Appl. Phys. 26(3), 410–415 (1987).
4. K. Okimura, A. Shibata, N. Maeda, K. Tachibana, Y. Noguchi, and K. Tsuchida, “Preparation of rutile TiO 2 films by RF magnetron sputtering,” Jpn. J. Appl. Phys. 34, 4950–4955 (1995).
5. Yu. V. Gerasimenko, V. A. Logacheva, and A. M. Khoviv, “Synthesis and properties of thin films of titanium dioxide,” Kondens. Sredy Mezhfaznye Granitsy 12(2), 113–118 (2010).
6. M. Cevro and M. Carter, “Ion beam sputtering and dual ion beam sputtering of titanium oxide films,” J. Phys. D: Appl. Phys. 28(9), 1962–1976 (1995).
7. V. Mikhelashvili and G. Eisenstein, “Optical and electrical characterization of the electron beam gun evaporated TiO 2 film,” Microelectron. Reliab. 41, 1057–1061 (2001).
8. D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, and B. Samset, “Density and refractive index of TiO 2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
9. S. H. Woo and C. K. Hwangbo, “Effects of annealing on the optical, structural, and chemical properties of TiO 2 and MgF 2 thin films prepared by plasma ion-assisted deposition,” Appl. Opt. 45, 1447–1455 (2006).
10. A. A. Kozyrev and A. D. Lebedev, “Optical characteristics of TiO 2 films obtained by ion assisted electron beam evaporation in vacuum,” in Abstracts of the Sixth International Symposium on Coherent Optical Radiation of Semiconductor Compounds and Structures (2017), pp. 72–73.
11. L. S. Lunin, M. L. Lunina, A. A. Kravtsov, I. A. Sysoyev, and A. V. Blinov, “Synthesis and study of the properties of thin TiO 2 films doped with silver nanoparticles for antireflective coatings and transparent contacts of photoconverters,” Fiz. Tekh. Poluprovodn. 50(9), 1253–1257 (2016).
12. Is. Fatimah, “Preparation of TiO 2 -SiO 2 via sol-gel method: effect of silica precursor on catalytic and photocatalytic properties,” IOP Conf. Ser.: Mater. Sci. Eng. 172, 1–7 (2016).
13. H. K. Pulker, G. Paesold, and E. Ritter, “Refractive indices of TiO 2 films produced by reactive evaporation of various titanium-oxygen phases,” Appl. Opt. 15, 2986–2991 (1976).
14. M. Gilo and N. Croitoru, “Properties of TiO 2 films prepared by ion-assisted deposition using a gridless end-Hall ion source,” Thin Solid Films 283(1–2), 84–89 (1996).
15. C. Zhao, D. Child, D. Gibson, F. Placido, and R. Y. Q. Fu, “TiO 2 films prepared using plasma ion assisted deposition for photocatalytic application,” Mater. Res. Bull. 60, 890–894 (2014).
16. C. K. Hwangbo and H. J. Cho, “Ion assisted deposition of TiO 2 thin films by Kaufman and gridless ion sources,” Rev. Laser Eng. 24(1), 103–109 (1996).
17. M. Khashan and A. Nassif, “Accurate measurement of the refractive indices of solids and liquids by the double-layer interferometer,” Appl. Opt. 39, 5991–5997 (2000).
18. T. Amotchkina, M. Trubetskov, A. Tikhonravov, I. B. Angelov, and V. Pervak, “Reliable optical characterization of e-beam evaporated TiO 2 films deposited at different substrate temperatures,” Appl. Opt. 53, A8–A15 (2014).
19. O. Stenzel and M. Ohlídal, Optical Characterization of Thin Solid Films (Springer, 2018).
20. O. Stenzel, Optical Coatings Material Aspects in Theory and Practice (Springer-Verlag, Berlin, 2014).