DOI: 10.17586/1023-5086-2020-87-10-25-37
УДК: 612.82
Reconstruction of a neural network and alteration of the operators’ strategies during the recognition of facial images
Full text on elibrary.ru
Publication in Journal of Optical Technology
Жукова О.В., Васильев П.П. Перестройка нейронной сети и изменение стратегий операторов в процессе распознавания изображений лиц // Оптический журнал. 2020. Т. 87. № 10. С. 25–37. http://doi.org/10.17586/1023-5086-2020-87-10-25-37
Zhukova O. V. and Vasil’ev P. P. Reconstruction of a neural network and alteration of the operators’ strategies during the recognition of facial images [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 10. P. 25–37. http://doi.org/10.17586/1023-5086-2020-87-10-25-37
Functional magnetic-resonance imaging was used to study the dynamics of information processing concerning a face in the neural networks of the brain. It is shown that large-scale neural networks of the operators’ brains were reconstructed during the second half of the study. Thus, when an instruction conflicts with the contents of the image so that it is impossible to find the correct solution, the operators transfer to a less energy-intensive behavioral strategy—they simulate the solution of the problem. When the assigned task is carried out under specified conditions, so that it is easy to distinguish the rotation of the head, the subject quickly learns to solve the problem, develops the knack, and adopts an automatic-motion regime—another neural network is activated, called the brain’s default-mode network. It is shown that the medial prefrontal cortex plays a role in developing and altering the strategy of the operator’s activity. The reconstruction of large-scale neural networks is probably caused by an unconscious mechanism that simplifies purposeful activity. The results agree well with the well-known principle of least action.
image, vision, perception, learning, functional magnetic resonance imaging, biological neural networks, artificial neural networks, principle of least action
OCIS codes: 100.4996, 170.6960, 330.5020
References:1. O. V. Zhukova, Yu. E. Shelepin, V. A. Maksimova, P. P. Vasil’ev, E. A. Vershinina, V. A. Fokin, and A. V. Sokolov, “Deciding on the minimum changes in images of a human face under conditions of indeterminacy,” J. Opt. Technol. 83(12), 753–759 (2016).
2. C. S. Roy and C. S. Sherrington, “On the regulation of the blood-supply of the brain,” J. Physiol. 11(1–2), 85–108 (1890).
3. Yu. D. Kropotov, “Structural method of studying slow vibrations in the human brain,” Fiziol. Chel. 1(1), 183–187 (1975).
4. Yu. E. Shelepin, O. V. Borachuk, S. V. Pronin, A. K. Kharauzov, P. P. Vasil’ev, and V. A. Fokin, “Faces and nonverbal means of communication,” Peterburgsk. Psikholog. Zh. (9), 1–43 (2014).
5. O. V. Borachuk, Yu. E. Shelepin, A. K. Kharauzov, P. P. Vasilev, V. A. Fokin, and A. V. Sokolov, “Study of the influence of the role of the instruction to the observer in tasks of recognizing emotionally colored patterns,” J. Opt. Technol. 82(10), 678–684 (2015).
6. M. E. Raichle, “The brain’s default mode network,” Annu. Rev. Neurosci. 38, 433–447 (2015).
7. K. Tanaka, H. Saito, Y. Fukada, and M. Moriya, “Coding visual images of objects in the inferotemporal cortex of the macaque monkey,” J. Neurophysiol. 66(1), 170–189 (1991).
8. K. Tanaka, “Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities,” Cereb. Cortex 13, 90–99 (2003).
9. Yu. E. Shelepin, V. A. Fokin, A. K. Kharauzov, S. V. Pronin, and V. N. Chikhman, “Localization of the decision-making center when the shape of visual stimuli is perceived,” Dokl. Akad. Nauk 429(6), 1–3 (2009).
10. Yu. E. Shelepin, V. A. Fokin, A. K. Kharauzov, N. Foreman, S. V. Pronin, O. A. Vakhrameeva, and V. N. Chikhman, “Using neuroimaging methods to localize mechanisms for making decisions concerning the ordering of textures,” J. Opt. Technol. 78(12), 808–816 (2011) [Opt. Zh. 78(12), 57–69 (2011)].
11. A. K. Kharauzov, P. P. Vasil’ev, A. V. Sokolov, Yu. E. Shelepin, M. B. Kuvaldina, O. V. Borachuk, V. A. Fokin, and S. V. Pronin, “Image perception in visual-search tasks when dynamic noise is present,” J. Opt. Technol. 82(5), 298–307 (2015) [Opt. Zh. 82(5), 42–55 (2015)].
12. R. Ptak, “The frontoparietal attention network of the human brain: action, saliency, and a priority map of the environment,” Neuroscientist 18(5), 502–515 (2011).
13. R. I. Manchinskaya, “The brain executive systems,” Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova 65(1), 33–61 (2015).
14. G. Y. Hong, S. K. June, and K. C. Chun, “Brain mechanisms in motor control during reaching movements: transition of functional connectivity according to movement states,” Sci. Rep. 10, 567 (2020).
15. E. Kropf, S. K. Syan, L. Minuzzi, and B. N. Frey, “From anatomy to function: the role of the somatosensory cortex in emotional regulation,” Braz. J. Psychiatry 41(3), 261–269 (2019).
16. R. N. Spreng and C. L. Grady, “Patterns of brain activity supporting autobiographical memory, prospection, and theory of mind, and their relationship to the default mode network,” J. Cognit. Neurosci. 22(6), 1112–1123 (2010).
17. D. Vatansever, D. K. Menon, and E. A. Stamatakis, “Default mode contributions to automated information processing,” Proc. Natl. Acad. Sci. U. S. A. 114(48), 12821–12826 (2017).
18. N. A. Bernshten, Concerning the Structure of Motions, N. A. Bernshten, ed. (Kniga po Trebovaniyu, Moscow, 2012).
19. G. K. Zipf, Human Behavior and the Principle of Least Effort (Addison- Wesley Press, Cambridge, 1949).
20. Yu. E. Shelepin, V. V. Volkov, and L. N. Kolesnikova, “The principle of least action in vision,” in The Principles and Mechanisms of the Activity of the Human Brain, N. P. Bekhtereva, ed. (Nauka, Leningrad, 1985), pp. 198–199.
21. Y. E. Shelepin, “Principle of least action, vision, and condition reflexes theory,” in International Symposium Dedicated to Academician I. Pavlov’s 150-anniversary: Mechanisms of Adaptive Behavior, St. Petersburg, 1999, pp. 195–196.
22. Y. Shelepin, N. N. Krasilnikov, E. Trufanov, A. Harauzov, S. Pronin, and V. Fokin, “The principle of least action and visual perception,” Perception 35, 125 (2006).
23. Yu. E. Shelepin and N. N. Krasil’nikov, “The principle of least action, the physiology of vision, and conditional-reflex theory,” Ross. Fiziol. Zh. im. I. M. Sechenova 89(6), 725–730 (2003).
24. K. Y. Shelepin, P. P. Vasilev, G. E. Trufanov, V. A. Fokin, and A. V. Sokolov, “Digital visualization of the activity of neural networks of the human brain before, during, and after insight when images are being recognized,” J. Opt. Technol. 85(8), 468–475 (2018).
25. K. Yu. Shelepin, S. V. Pronin, and Yu. E. Shelepin, “Recognizing fragmented
images and the appearance of ‘insight’,” J. Opt. Technol. 82(10), 700–706 (2015).
26. K. Yu. Shelepin, G. E. Trufanov, V. A. Fokin, P. P. Vasil’ev, and A. V. Sokolov, “Activity of the neural networks of the human brain before, during, and after insight when images are being recognized,” in Neurotechnologies (Izd. VVM, St. Petersburg, 2018), pp. 220–244.
27. R. O. Malashin, “Principle of least action in dynamically configured image-analysis systems,” J. Opt. Technol. 86(11), 678–685 (2019) [Opt. Zh. 86(11), 5–13 (2019)].