ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-02-44-49

УДК: 535.8, 535.31, 681.2.08, 535-15

Development of a high-resolution objective for an IR image synthesis system

For Russian citation (Opticheskii Zhurnal):

Солдатенко А.В., Верхогляд А.Г., Завьялов П.С., Ступак М.Ф., Максимов А.Г., Мареева Н.Е. Разработка высокоразрешающего объектива для системы синтеза инфракрасных изображений // Оптический журнал. 2020. Т. 87. № 2. С. 44–49. http://doi.org/10.17586/1023-5086-2020-87-02-44-49

 

Soldatenko A.V., Verkhoglyad A.G., Zaviyalov P.S., Stupak M.F., Maksimov A.G., Mareeva N.E. Development of a high-resolution objective for an IR image synthesis system [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 2. P. 44–49. http://doi.org/10.17586/1023-5086-2020-87-02-44-49

For citation (Journal of Optical Technology):

A. V. Soldatenko, A. G. Verhoglyad, P. S. Zav’yalov, M. F. Stupak, A. G. Maximov, and N. E. Mareeva, "Development of a high-resolution objective for an IR image synthesis system," Journal of Optical Technology. 87(2), 100-104 (2020). https://doi.org/10.1364/JOT.87.000100

Abstract:

The results of the engineering and testing of an objective included in an automated system for synthesizing dynamic and static IR images that help monitor the characteristics of a photodetector array are presented. The size of a objective-formed point object in the image plane of the tested device within the spectral range from 2.5 to 4.6 µm does not exceed 30 µm with an energy concentration of 70%.

Keywords:

objective design, photodetector array, IR image, energy concentration coefficient

OCIS codes: 080.3620, 260.3060, 220.2740, 250.0040

References:

1. V. Tarasov and Yu. Yakushenkov, “Current status and development prospects of foreign thermal imaging systems,” Nauchno-Tekh. Vestn. Inf. Tekhnol., Mekh. Opt. 3(85), 1–13 (2013).
2. K. Kozlov, A. Patrashyn, I. Burlakov, Ya. Bychkovskiy, B. Drazhnikov, and P. Kuznetsov, “Modern infrared photodetectors for ERS scanning equipment (review),” Usp. Prikl. Fiz. 5(1), 63–79 (2017).
3. V. Startsev and A. Naumov, “Modern infrared photodetectors and development trends,” AO Design Bureau “ASTRON,” http://astrohn.com/wp-content/uploads/2018/11/66-70.pdf.
4. I. Gibin and G. Kolesnikov, “Modern devices for measuring and comprehensive testing of infrared photodetectors and instruments (review),” Usp. Prikl. Fiz. 2(3), 293–302 (2014).
5. V. Kurt, M. Voron’ko, and D. Vasilyev, “Measuring bench on the basis of a micromirror array for measuring parameters of optoelectronic systems operating in the infrared range,” in Proceedings of the 24th International Scientific and Technical Conference on Photoelectronics and Night Vision Devices (AO “ORION,” Moscow, 2016), pp. 268–270.
6. V. A. Baloev, S. N. Bezdid’ko, S. V. Maksin, A. B. Bel’ski˘ı, G. N. Gerasimov, V. A. Tupikov, A. I. Dirochka, V. P. Ponomarenko, V. V. Tarasov, A. M. Filachev, and Yu. G. Yakushenkov, “Developing new approaches in optical and optoelectronic instrumentation in this country,” J. Opt. Technol. 77(8), 521–525 (2010) [Opt. Zh. 77(8), 75–80 (2010)].
7. E. Ulyanova, “Construction of schemes of TV objectives,” in Proceedings of the International Scientific Conference “Specialized Instrumentation-Making, Metrology, Thermal Physics, Microtechnology, Nanotechnology” (Interexpo Geo-Siberia), Novosibirsk, April 10–20, 2012 (SSGA, Novosibirsk), Vol. 1, pp. 142–145.
8. O. Lebedev, V. Nuzhyn, and S. Solk, “U62P. Design and manufacture of IR objectives compatible with photodetector arrays,” in XVII International Scientific and Technical Conference on Photoelectronics and NVD (Moscow, 2002), p. 67.
9. A. Verkhoglyad, I. Gibin, A. Yelesin, L. Kastorskiy, S. Kokarev, A. Soldatenko, and M. Stupak, “Automated IR image synthesis system for testing photodetector arrays,” Usp. Prikl. Fiz. 3, 260–268 (2018).
10. E. Ul’yanova, “Optical systems for thermal viewers based on photodetector arrays of the spectral range 8–12 μm,” J. Opt. Technol. 80(6), 339–342 (2013) [Opt. Zh. 80(6), 14–19 (2013)].
11. A. Garshin, “Features of the design of three-lens IR objectives that operate with cooled detectors,” J. Opt. Technol. 83(4), 224–227 (2016) [Opt. Zh. 83(4), 38–43 (2016)].
12. Zemax Optical and Illumination Design Software, http://www.zemax.com/.
13. A. Verkhoglyad, I. Gibin, A. Yelesin, S. Makarov, and M. Stupak, “Highly sensitive device for measuring the energy concentration factor in the IR image synthesis to test photodetector arrays,” Prikl. Fiz. 3, 79–84 (2018).
14. 3A transducer measuring thermoelectric laser radiation, Ophir Optronics Solutions, Israel, Pattern Approval Certificate IL.C.37.003.A, no. 44661.