DOI: 10.17586/1023-5086-2020-87-03-10-16
УДК: 535.21, 538.915
Disruption of charge equilibrium as a root cause of intrinsic optical breakdown in dielectrics
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Комолов В.Л. Нарушение зарядового равновесия как причина собственного оптического пробоя диэлектрика // Оптический журнал. 2020. Т. 87. № 3. С. 10–16. http://doi.org/10.17586/1023-5086-2020-87-03-10-16
Komolov V.L. Disruption of charge equilibrium as a root cause of intrinsic optical breakdown in dielectrics [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 3. P. 10–16. http://doi.org/10.17586/1023-5086-2020-87-03-10-16
V. L. Komolov, "Disruption of charge equilibrium as a root cause of intrinsic optical breakdown in dielectrics," Journal of Optical Technology. 87(3), 142-146 (2020). https://doi.org/10.1364/JOT.87.000142
Within the framework of a previously proposed model, this work analyzes the processes in the lattice of a solid body that lead to an irreversible violation of charge equilibrium under the influence of an external electric field. A simple interpretation of the causes of the irreversible breakdown of bonds in the crystal lattice due to the charge motion inside the dielectric is provided, and the pathways and conditions for lattice instability under the influence of intense laser pulses are discussed.
optical breakdown, lattice bond energy, spatial redistribution
Acknowledgements:The author would like to thank M. I. Tribelskiy for his useful remarks and recommendations during the discussions of the model.
OCIS codes: 140.3330, 320.2250
References:1. V. L. Komolov, “Intrinsic optical breakdown of dielectrics with electrostatic breaking of crystal lattice bonds,” J. Opt. Technol. 85, 259–263 (2018) [Opt. Zh. 85(5), 7–12 (2018)].
2. O. M. Efimov, “Nonlinear absorption of laser radiation and optical breakdown of silicate glasses,” Ph.D. thesis (Vavilov State Optical Institute, Leningrad, 1985).
3. O. M. Efimov, “Nonlinear generation of defects in silicate glasses,” Ph.D. thesis (Vavilov State Optical Institute, St. Petersburg, 1995).
4. L. B. Glebov and O. M. Efimov, “The study of patterns and the mechanism of intrinsic optical breakdown,” Izv. Akad. Nauk SSSR 49(6), 1140–1145 (1985).
5. O. M. Efimov, “Self-optical breakdown and multipulse optical breakdown of transparent insulators in the femto-nanosecond region of laser pulse widths,” J. Opt. Technol. 71, 338–347 (2004) [Opt. Zh. 71(6), 6–17 (2004)].
6. A. A. Manenkov and A. M. Prokhorov, “Laser-induced damage in solids,” Phys. Usp. 29, 104–122 (1986) [Usp. Fiz. Nauk 148, 179–211 (1986)].
7. V. P. Ve˘ıko, M. N. Libenson, G. G. Chervyakov, and E. B. Yakovlev, Interaction of Laser Radiation with Matter (Power Optics) (Fizmatlit, Moscow, Russia, 2008).
8. V. E. Gruzdev, “New aspects of laser-induced ionization of wide band-gap solids,” in Laser Ablation, C. H. Phipps, ed. (Springer, 2006). p. 99–121.
9. L. B. Glebov, O. M. Efimov, M. N. Libenson, and G. T. Petrovski˘ı, “New ideas about intrinsic breakdown of transparent dielectrics,” Dokl. Akad. Nauk SSSR 287(5), 1114–1118 (1986).
10. Y. A. Imas, “Optical breakdown of transparent dielectrics (review of experimental works),” Preprint 13 (A. V. Luikov Institute of Heat and Mass Transfer of the National Academy of Sciences of Belarus, Minsk, Belarus, 1982).
11. A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems,” Opt. Eng. 53(1), 010901 (2014).
12. N. Kuzuu, K. Yoshida, H. Yoshida, T. Kamimura, and N. Kamisugi, “Laser-induced bulk damage in various types of vitreous silica at 1064, 532, 355, and 266 nm: evidence of different damage mechanisms between 266-nm and longer wavelengths,” Appl. Opt. 38, 2510–2515 (1999).
13. D. Homoelle, S. Wielandy, and A. L. Gaeta, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24(18), 1311–1313 (1999).
14. O. M. Efimov, S. Juodkazis, and H. Misawa, “Intrinsic single and multiple pulse laser-induced damage in silicate glasses in the femtosecond-to-nanosecond region,” Phys. Rev. A. 69(4), 042903 (2004).
15. E. Gamaly, B. Luther-Davies, A. Rode, S. Joudkazis, H. Misawa, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of transparent dielectrics: confined micro-explosion,” J. Phys.: Conf. Ser. 59, 5–10 (2007).
16. A. V. Smith, B. T. Do, and M. Soderlund, “Nanosecond laser-induced breakdown in pure and Yb3+ doped fused silica,” Proc. SPIE 6403, 640321 (2007).
17. V. Smith and B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47(26), 4812–4832 (2008).
18. M. Sozet, J. Neauport, E. Lavastre, N. Roquin, L. Gallais, and L. Lamaignère, “Laser damage growth with picosecond pulses,” Opt. Lett. 41(10), 2342–2345 (2016).
19. J. Huang, H. Liu, F. Wang, X. Ye, L. Sun, X. Zhou, Z. Wu, X. Jiang, W. Zheng, and D. Sun, “Influence of bulk defects on bulk damage performance of fused silica optics at 355 nm nanosecond pulse laser,” Opt. Express 25, 33416-33428 (2017).
20. J. F. Ready, Effects of High-Power Laser Radiation (Academic Press, Orlando, 1971; Mir, Moscow, 1974).
21. S. I. Anisimov, Y. A. Imas, G. S. Romanov, and Y. V. Khodiko, The Effect of High Power Radiation on Metals (Nauka, Moscow, USSR, 1970).
22. O. M. Efimov, “Self-focusing of tightly focused laser beams,” Appl. Opt. 54(22), 6895–6903 (2015).
23. A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature 493, 70–74 (2013).