DOI: 10.17586/1023-5086-2020-87-03-37-45
УДК: 535.375.5
Optical analysis of bone tissue by Raman spectroscopy in experimental osteoporosis and its correction using allogeneic hydroxyapatite
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Тимченко Е.В., Тимченко П.Е., Писарева Е.В., Власов М.Ю., Волова Л.Т., Федотов А.А., Федорова Я.В., Тюмченкова А.С., Романова Д.А., Даниэль М.А., Субатович А.Н. Оптический анализ костной ткани методом спектроскопии комбинационного рассеяния при экспериментальном остеопорозе и его коррекции с помощью аллогенного гидроксиапатита // Оптический журнал. 2020. Т. 87. № 3. С. 37–45. http://doi.org/10.17586/1023-5086-2020-87-03-37-45
Timchenko E.V., Timchenko P.E., Pisareva E.V., Vlasov M.Yu., Volova L.T., Fedotov A.A., Fedorova Ya.V., Tyumchenkova A.S., Romanova D.A., Daniel M.A., Subatovich A.N. Optical analysis of bone tissue by Raman spectroscopy in experimental osteoporosis and its correction using allogeneic hydroxyapatite [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 3. P. 37–45. http://doi.org/10.17586/1023-5086-2020-87-03-37-45
E. V. Timchenko, P. E. Timchenko, E. V. Pisareva, M. Yu. Vlasov, L. T. Volova, A. A. Fedotov, Ya. V. Fedorova, A. S. Tyumchenkova, D. A. Romanova, M. A. Daniel, and A. N. Subatovich, "Optical analysis of bone tissue by Raman spectroscopy in experimental osteoporosis and its correction using allogeneic hydroxyapatite," Journal of Optical Technology. 87(3), 161-167 (2020). https://doi.org/10.1364/JOT.87.000161
The results of experimental studies of bone tissue in models of osteoporosis are presented, and the effectiveness of the correction of this pathological condition using allogeneic hydroxyapatite is evaluated by Raman spectroscopy. During the studies, Raman spectra of the cancellous and cortical bone tissues were obtained and the spectra were deconvolved into bands using the Gaussian function. The introduced coefficients make it possible to evaluate the effectiveness of various doses of hydroxyapatite (10, 20, 30 mg/kg) for the correction of osteoresorption in models of osteoporosis by ovariectomy. It was established that, in contrast to the cortical bone, pronounced changes in the coefficients I1069/I1739, I850/I1739, and I1243/I1739 were not observed in the cancellous bone. The introduction of a suspension of hydroxyapatite showed that during the indicated treatment period, the consequences of ovariectomy can be reversed by 40%–60% for the cancellous bone and almost completely for the cortical bone (70%–100%).
Raman spectroscopy, optical coefficients, osteoporosis, hydroxyapatite, ovariectomy, collagen matrice, spectrum deconvolution
Acknowledgements:The research was supported by the Russian Foundation for Basic Research (RFBR) (18-315-20017\18).
OCIS codes: 170.5660, 170.4580
References:1. V. E. Privalov, A. E. Fotiadi, and V. G. Shemanin, Lasers and Ecological Monitoring of the Atmosphere (Lan’, 2013).
2. G. I. Dolgikh and V. E. Privalov, Laser Physics: Fundamental and Applied Research (Reya, Vladivostok, 2016).
3. G. I. Dolgikh and V. E. Privalov, Lasers: Laser Systems (Dal’nauka, Vladivostok, 2009).
4. V. E. Privalov, Gas Discharge Lasers in Measuring Complexes (Sudostroenie, 1989).
5. I. I. Dedov, Osteoporosis: Clinical Recommendations (Russian Association of Endocrinologists, 2016), p. 104.
6. P. E. Timchenko, E. V. Timchenko, E. V. Pisareva, M. Yu. Vlasov, L. T. Volova, O. O. Frolov, and A. R. Kalimullina, “Experimental studies of hydroxyapatite using Raman spectroscopy,” J. Opt. Technol. 85(3), 130–135 (2018) [Opt. Zh. 85(3), 1–7 (2018)].
7. P. Choksi, K. J. Jepsen, and G. A. Clines, “The challenges of diagnosing osteoporosis and the limitations of currently available tools,” Clin. Diabetes Endocrinol. 4(12), 1–13 (2018).
8. E. V. Timchenko, P. E. Timchenko, A. Lichtenberg, A. Assmann, H. Aubin, P. Akhyari, L. T. Volova, and S. V. Pershutkina, “Assessment of decellularization of heart bioimplants using a Raman spectroscopy method,” J. Biomed. Opt. 22(9), 091511 (2017).
9. M. Nam, J. E. Huh, M. S. Kim, D. H. Ryu, J. Park, H. S. Kim, S. Y. Lee, and G. S. Hwang, “Metabolic alterations in the bone tissues of aged osteoporotic mice,” Sci. Rep. 8, 8127 (2018).
10. D. J. Kerns, “Evidence from Raman spectroscopy of a putative link between inherent bone matrix chemistry and degenerative joint disease,” Arthritis Rheumatol. 66(5), 1237–1246 (2014).
11. L. I. Sergeeva and V. E. Kuz’mina, Physiology of Blood, Circulatory and Internal Secretion Systems (Chelyabinsk State Pedagogical University, Chelyabinsk, 2015).
12. A. A. Krel, “Methods for the determination of oxyproline in biological fluids and their use in clinical practice,” Vopr. Biomed. Khim. 6, 635–643 (1968).
13. V. G. Podkovkin and D. G. Ivanov, “The state of the adrenal cortex and the dynamics of oxyproline concentration in rats under heat load,” Vestn. Samar. Gos. Univ. (9), 237–246 (2006).
14. Yu. P. Frolov, Mathematical Methods in Biology: Computers and Programming (Samarski˘ı Universitet, Samara, 1997), p. 265.
15. G. A. Merkulov, Pathohistological Technology Course (Meditsina, 1969), p. 406.
16. E. V. Timchenko, P. E. Timchenko, L. T. Volova, Yu. V. Ponomareva, and L. A. Taskina, “Raman spectroscopy of the organic and mineral structure of bone grafts,” Quantum Electron. 44(7), 696–699 (2014).
17. E. V. Timchenko, P. E. Timchenko, L. A. Taskina, L. T. Volova, M. N. Miljakova, and N. A. Maksimenko, “Using Raman spectroscopy to estimate the demineralization of bone transplants during preparation,” J. Opt. Technol. 82(3), 153–157 (2015) [Opt. Zh. 82(3), 30–36 (2015)].
18. E. V. Timchenko, P. E. Timchenko, L. T. Volova, S. V. Pershutkina, and P. Y. Shalkovsky, “Optical analysis of aortic implants,” Opt. Mem. Neural Networks 25(3), 192–197 (2016).
19. Z. Movasaghi, I. Rehman, and S. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
20. L. F. Sukhoduba, C. Moseke, and L. R. Sukhodub, “Collagen–hydroxyapatite–water interactions investigated by XRD, piezogravimetry, infrared and Raman spectroscopy,” J. Mol. Struct. 704(1–3), 53–58 (2004).
21. J. Shen, L. Fan, J. Yang, A. G. Shen, and J. M. Hu, “A longitudinal Raman microspectroscopic study of osteoporosis induced by spinal cord injury,” Osteoporosis Int. 21(1), 81–87 (2010).
22. M. G. Orkoulaa, M. Z. Vardaki, and C. G. Kontoyannis, “Study of bone matrix changes induced by osteoporosis in rat tibia using Raman spectroscopy,” Vib. Spectrosc. 63, 404–408 (2012).
23. J. R. Beattie, M. C. Caraher, N. M. Cummins, O. M. O’Driscoll, R. Eastell, S. H. Ralston, and M. R. Towler, “Raman spectral variation for human fingernails of postmenopausal women is dependent on fracture risk and osteoporosis status,” J. Raman Spectrosc. 48(6), 813–821 (2017).
24. C. P. Tarnowski, “Mineralization of developing mouse calvaria as revealed by Raman microspectroscopy,” J. Bone Miner. Res. 17(6), 1118–1126 (2002).
25. R. H. Christenson, “Biochemical markers of bone metabolism: an overview,” Clin. Biochem. 30(8), 573–593 (1997).
26. R. Polak and R. N. M. Pitombo, “Care during freeze-drying of bovine pericardium tissue to be used as a biomaterial: a comparative study,” Cryobiology 63(2), 61–67 (2011).
27. E. F. Eriksen, D. S. Colvard, N. J. Berg, M. L. Graham, K. G. Mann, T. C. Spelsberg, and B. L. Riggs, “Evidence of estrogen receptors in normal human osteoblast-like cells,” Science 241(4861), 84–86 (1988).
28. G. R. Mundy, “Bone resorbing cells,” in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism (Raven Press, NY, 2002), pp. 25–32.
29. J. Stefen and L. Pettis, “Prospective trial of ossein-hydroxyapatite compound in surgically induced postmenopausal women,” Bone 10(3), 276–282 (1989).
30. A. Pines, H. Raafat, A. H. Lynn, and J. Whittington, “Clinical trial of microcrystalline hydroxyapatite compound (‘Ossopan’) in the prevention of osteoporosis due to corticosteroid therapy,” Curr. Med. Res. Opin. 8(10), 734–742 (1984).