DOI: 10.17586/1023-5086-2020-87-07-31-40
УДК: 621.397.3
Regularizing algorithm with an adaptive stabilizer for the image-restoration problem
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Сережникова Т.И. Регуляризирующий алгоритм с адаптивным стабилизатором для задачи восстановления изображений // Оптический журнал. 2020. Т. 87. № 7. С. 31–40. http://doi.org/10.17586/1023-5086-2020-87-07-31-40
Serezhnikova T.I. Regularizing algorithm with an adaptive stabilizer for the image-restoration problem [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 7. P. 31–40. http://doi.org/10.17586/1023-5086-2020-87-07-31-40
T. I. Serezhnikova, "Regularizing algorithm with an adaptive stabilizer for the image-restoration problem," Journal of Optical Technology. 87(7), 410-416 (2020). https://doi.org/10.1364/JOT.87.000410
This paper proposes and appraises what we believe to be a new design for a two-dimensional stabilizer that makes it possible to use iterations to refine the geometrical parameters of segments on an image. The algorithm makes it possible to compute the contour points of the boundaries of the segments at the final stages of the calculations and implements a simple effective procedure for accomplishing this. The results of using the algorithm are demonstrated: simultaneous restoration of an image with the segments that exist on the image and images of the restored contours of the segments on the image.
image and segment recovery in the image, two-dimensional in-tegral Fredholm equation of the first kind, non-smooth solutions, regularization, adaptation, stabilization, subgradient process
OCIS codes: 100.0100
References:
REFERENCES
1. A. S. Leonov, Solution of Ill-Posed Inverse Problems: Outline of the Theory of Practical Algorithms and Demonstrations in MATLAB (Knizhny Dom LIBROKOM, Moscow, 2010).
2. V. S. Sizikov, Direct and Inverse Problems of Image Restoration, Spectroscopy, and Tomography with MatLab (Izd. Lan’, St. Petersburg, 2017).
3. V. S. Sizikov, A. V. Stepanov, A. V. Mezhenin, D. I. Burlov, and R. A. Ékzemplyarov, “Determining image-distortion parameters by spectral means when processing pictures of the earth’s surface obtained from satellites and aircraft,” J. Opt. Technol. 85(4), 203–210 (2018) [Opt. Zh. 85(4), 19–27 (2018)].
4. V. S. Sizikov, “Spectral method for estimating the point-spread function in the task of eliminating image distortions,” J. Opt. Technol. 84(2), 95–101 (2017) [Opt. Zh. 84(2), 36-44 (2017)].
5. V. S. Sizikov, “Estimating the point-spread function from the spectrum of a distorted tomographic image,” J. Opt. Technol. 82(10), 655–658 (2015) [Opt. Zh. 82(10), 13–17 (2015)].
6. E. Klann, R. Ramlau, and S. Peng, “A Mumford—Shah-type approach to simultaneous reconstruction and segmentation for emission tomography problems with Poisson statistics,” J. Inverse Ill-Posed Prob. 25(4), 521–542 (2017).
7. V. V. Vasin and A. L. Ageev, Ill-Posed Problems with a Priori Information (UIF Nauka, Ekaterinburg, 1993).
8. V. V. Vasin and T. I. Serezhnikova, “Two-stage approximation of nonsmooth solutions and restoration of noised images,” Autom. Remote Control 65, 270–279 (2004) [Avtom. Telemekh. (2), 126–135 (2004)].
9. V. V. Vasin and T. I. Serezhnikova, “Regular algorithm for approximating nonsmooth solutions for Fredholm integral equations of the first kind,” Vychisl. Tekhnol. 15, 15–23 (2010).
10. M. M. Lavrent’ev, V. G. Romanov, and S. P. Shishatski˘ı, Ill-Posed Problems of Mathematical Physics and Analysis (Nauka, Moscow, 1980).
11. J. Huang, M. Donatelli, and R. Chan, “Nonstationary iterated thresholding algorithms for image deblurring,” Inverse Probl. Imaging 7(3), 717–736 (2013).
12. A. L. Ageev, T. V. Antonova, and T. I. Serezhnikova, “Regular methods for localizing features using noisy data,” in International Scientific Conference on Mathematics in the Modern World, Abstracts of Reports (Izd. Instituta Matematiki, Novosibirsk, 2017), p. 286.
13. T. I. Serezhnikova, “Development of an adaptive stabilizer for restoring smeared and noisy images,” in International Scientific Conference on Modern Problems of Mathematical Physics and
Computational Mathematics, Abstracts of Reports, Moscow, 2016, p. 178.
14. T. I. Serezhnikova, “On a regular algorithm for restoring nonsmooth
solutions of Fredholm integral equations of the first kind,” Vopr. At. Nauki Tekh., Ser. Mat. Modeli Fiz. Protsessov Nauch.-Tekh. Sb.(4), 71–78 (2010).
15. T. I. Serezhnikova, “On the development of an algorithm for restoring smeared images,” in All-Russia Conference on Algorithmic Analysis of Ill-Posed Problems, Chelyabinsk, 2014.
16. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, Upper Saddle River, N.J., 2002; Tekhnosfera, Moscow, 2005).
17. I. V. Konnov, Nonlinear Optimization and Variational Inequalities (Izd. Kazanskogo Univ., Kazan, 2013).