DOI: 10.17586/1023-5086-2020-87-08-58-62
УДК: 551.508
Spectral nephelometric method for the determination of the meteorological optical range
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Кугейко М.М. Спектро-нефелометрический метод определения метеорологической оптической дальности // Оптический журнал. 2020. Т. 87. № 8. С. 58–62. http://doi.org/10.17586/1023-5086-2020-87-08-58-62
Kugeiko M.M. Spectral nephelometric method for the determination of the meteorological optical range [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 8. P. 58–62. http://doi.org/10.17586/1023-5086-2020-87-08-58-62
M. M. Kugeiko, "Spectral nephelometric method for the determination of the meteorological optical range," Journal of Optical Technology. 87(8), 491-494 (2020). https://doi.org/10.1364/JOT.87.000491
A spectral nephelometric method for the determination of the meteorological optical range is proposed; the proposed method improves the accuracy and operational reliability by eliminating the systematic errors caused by changes in the environment and hardware properties of the measuring system. The method includes the irradiation of the scattering medium volume with three different wavelengths in two directions and the determination of the spectral values of the attenuation rates σ(λi) using the established regression relationships between σ(λi) and the scattering coefficients at an angle φ, σ(φ). The effectiveness of the proposed method is estimated. The viability of this method in determining the visual range on runways is demonstrated in terms of achieving reliably safe take-off and landing of aircraft.
meteorological optical range, attenuation indicators, scattering at an angle, spectral measurements, inverse problem
OCIS codes: 010.0010, 010.3920
References:REFERENCES
1. Manual for the Determination of the Runway Visual Range (RVR) (Izdatel’skii Tsentr ANO “Meteoagenstvo Rosgidromet,” Moscow, 2006), pp. 3, 26–37.
2. O. A. Volkov, A. V. Demin, and K. V. Konstantinov, “An optical system of a sensor for measuring the meteorological optical range,” Komput. Opt. 42(1), 67–71 (2018).
3. User’s manual of the Yaisala PWD10/20/50 visibility sensor, pp. 17–18.
4. User’s manual of the FS11 visibility sensor, pp. 17–19.
5. A. P. Ivanov, Optics of Scattering Media (Nauka i Tekhnika, Minsk, 1969), pp. 458–460.
6. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Mir, Moscow, 1986), pp. 107–138, 178–183, 602–616.
7. V. E. Zuev and G. M. Krekov, Optical Models of the Atmosphere, Vol. 2 (Gidrometeoizdat, Leningrad, 1986), pp. 24–76.
8. World Meteorological Organization, “World Climate Research Programme: a preliminary cloudless standard atmosphere for radiation computation” Report WCP-112, WMO/TD-24, Switzerland, 1986, pp. 5–52.
9. F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Ontar Corporation,
North Andover, 1996).