DOI: 10.17586/1023-5086-2021-88-10-83-89
УДК: 535.37, 549.02
Optical properties of a new decorative stone—rayizite
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Соломонов В.И., Спирина А.В., Попов М.П., Макарова А.С., Николаев А.Г., Орлов А.Н. Оптические свойства нового ювелирно-поделочного камня — райизита // Оптический журнал. 2021. Т. 88. № 10. С. 83–89. http://doi.org/10.17586/1023-5086-2021-88-10-83-89
Solomonov V.I., Spirina A.V., Popov M.P., Makarova A.S., Nikolaev A.G., Orlov A.N. Optical properties of a new decorative stone—rayizite [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 10. P. 83–89. http://doi.org/10.17586/1023-5086-2021-88-10-83-89
V. I. Solomonov, A. V. Spirina, M. P. Popov, A. S. Makarova, A. G. Nikolaev, and A. N. Orlov, "Optical properties of a new decorative stone—rayizite," Journal of Optical Technology. 88(10), 610-614 (2021). https://doi.org/10.1364/JOT.88.000610
In this paper, we present the findings of research on absorption spectra, reflection spectra, and luminescence spectra for a new decorative stone—rayizite, which is a mixture of antigorite, dolomite, and a small amount of talc. This stone exhibits the alexandrite effect, and the color is due to chromian antigorite. The Y and U bands in the absorption spectra and the R line at 686.6 nm in the luminescence spectra indicate that Cr3+ ions are present. The emission spectrum also includes the emission of Fe2+ ions at wavelength 615 nm. The band at 650 nm, which becomes active under the action of a pulsed electron beam and does not occur during photoexcitation, is a distinguishing feature. This band belongs to a center associated with emission from nonbridging oxygen. In this paper, we discuss the mechanism for the formation of such luminescence centers.
rayizite, pulsed cathodoluminescence, photoluminescence, absorption, alexandrite effect
Acknowledgements:This work was performed under Government Task Order AAAA-A19-119020790031-5, with partial funding from the Russian Foundation for Basic Research No. 20-08-00018 and with support from the Ministry of Science and Higher Education of the Russian Federation under Contract No. 075-15-2020-931 for development of a World-Class Research Center for Rational Development of the World’s Liquid Hydrocarbon Reserves.
OCIS codes: 300.6280, 160.4760
References:1. F. Nurmuhametov and M. Popov, “A stone the color of fireweed,” Uralsky Sledopyt 12(762), 3–7 (2020).
2. M. P. Popov, Yu. V. Erokhin, D. A. Khanin, A. G. Nikolaev, F. M. Nurmuhametov, and P. B. Shiryaev, “Details of the composition of a new ornamental stone—rayizite,” Vestn. Ural’sk. Otd. Mineral. O-va. RAN (17), 94–99 (2020).
3. D. T. Sviridov, R. K. Sviridova, and Yu. F. Smirnov, Optical Spectra of Transition-Metal Ions in Crystals (Nauka, Moscow, 1976).
4. A. N. Tarashchan, Luminescence of Minerals (Naukova Dumka, Kiev, 1978).
5. V. I. Solomonov and S. G. Mikha˘ılov, Pulsed Cathodoluminescence and Its Applications to Analysis of Condensed Matter (UrO RAN, Ekaterinburg, 2003).
6. M. Gaft, R. Reisfeld, and G. Panczer, Luminescence Spectroscopy of Minerals and Materials (Springer, Berlin, 2005).
7. C. Rinaudo, D. Gastaldi, and E. Belluso, “Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy,” Can. Mineral. 41, 883–890 (2003).
8. V. P. Lyutoev, Isomorphism and Internal Defects in Serpentine-Group Minerals (UrO RAN, Ekaterinburg, 2003).
9. M. V. Vengerova and A. S. Vengerov, Minerals and Rocks (Izd-vo Ural. Un-ta, 2017).
10. S. V. Vonsovski˘ı, S. V. Grum-Grzhima˘ılo, V. M. Cherepanov, A. N. Men’, D. T. Sviridov, Yu. F. Smirnov, and A. E. Nikiforov, Theory of Crystalline Field and Optical Spectra of Impurity Ions with Partially Filled d Shells (Nauka, Glavnaya Redaktsiya Fiziko-Matematichesko˘ı Literatury, Moscow, 1969).
11. T. Bates, Ligand Field Theory and Absorption Spectra of Transition-Metal Ions in Glasses (Butterworths, London (1962).
12. V. I. Solomonov, A. I. Lipchak, and S. G. Mikhailov, “Pulsed cathodoluminescence—a new technique for analysis of condensed matter,” Anal. Kontrol’ 1(3), 8–15 (1998).
13. V. I. Solomonov, S. G. Mikha˘ılov, and A. M. De˘ıkun, “Excitation mechanism and structure of pulsed cathodoluminescence bands of impurity Cr3+ and Mn2+ ions in minerals,” Opt. Spectrosc. 80(3), 398–408 (1996) [Opt. Spectrosk. 80(3), 447–458 (1996)].
14. A. P. Baraban, V. A. Dmitriev, O. P. Matveeva, and V. A. Prokof’ev, “Characteristics of red luminescence in SiO2 layers on silicon,” Vestn. S.-Peterb. Univ., Ser. 4: Fiz. Khim. (4), 49–53 (2012).
15. M. V. Zamoryanskaya and V. I. Sokolov, “Structural study of thermal-oxide films on silicon by cathodoluminescence,” Phys. Solid State 40, 1797–1801 (1998) [Fiz. Tverd. Tela (S.-Peterburg) 40(11), 1984–1989 (1998)].