ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2021-88-02-20-26

УДК: 53.06

Assessment of fatigue damage of fluoroorganic aircraft glass using digital holography methods

For Russian citation (Opticheskii Zhurnal):

Юдин Н.Н., Павлов П.В., Зиновьев М.М., Подзывалов С.Н., Дёмин В.В., Половцев И.Г., Кусков И.Э., Вольф И.Э., Евсин А.О., Балашов А.А., Костин А.С. Оценка усталостных повреждений авиационного фторорганического стекла методами цифровой голографии // Оптический журнал. 2021. Т. 88. № 2. С. 20–26. http://doi.org/10.17586/1023-5086-2021-88-02-20-26

 

Yudin N.N., Pavlov P.V., Zinoviev M.M., Podzyvalov S.N., Dyomin V.V., Polovtsev I.G., Kuskov I.E., Volf I.E., Evsin A.O., Balashov A.A., Kostin A.S. Assessment of fatigue damage of fluoroorganic aircraft glass using digital holography methods [in Russian] // Opticheskii Zhurnal. 2021. V. 88. № 2. P. 20–26. http://doi.org/10.17586/1023-5086-2021-88-02-20-26

For citation (Journal of Optical Technology):

N. N. Yudin, P. V. Pavlov, M. M. Zinov’ev, S. N. Podzyvalov, V. V. Dyomin, I. G. Polovtsev, I. E. Kuskov, I. E. Vol’f, A. O. Evsin, A. A. Balashov, and A. S. Kostin, "Assessment of fatigue damage of fluoroorganic aircraft glass using digital holography methods," Journal of Optical Technology. 88(2), 72-76 (2021). https://doi.org/10.1364/JOT.88.000072

Abstract:

A digital holography method is proposed for determination of the depth and characteristic size of fatigue damage of fluoroorganic aircraft windows. The ability of this method to determine the characteristic lateral size of surface defects of the aircraft cabin window components with a measurement error of ±15µm and the longitudinal size (depth of the surface defect) with a measurement error of up to ±100µm (for defects with characteristic lateral sizes less than 60 µm) is demonstrated. The investigation and developed model of the digital holographic camera indicate the possibility of developing the method for testing the aircraft cabin window components for surface damage with the required accuracy and estimation of its effects on flight safety.

Keywords:

digital holography, aircraft glass

OCIS codes: 090.0090

References:

1. I. V. Mekalina, V. A. Bogatov, T. S. Trigub, and E. G. Sentyurin, “Aviation organic glass,” Proc. Russ. Res. Inst. Aviat. Mater. (14), 190 (2013).
2. I. V. Mecaline, M. K. Aizatulin, E. G. Sentjurin, and A. A. Popov, “Features of the influence of atmospheric factors on aviation organic glass,” Proc. Russ. Res. Inst. Aviat. Mater. (11), 210 (2018).
3. A. A. Balashov, S. V. Akol’zin, and V. G. Komarov, “Rapid testing of photoorganic glass-based window components of aircraft under the conditions of subtropical and hot tropical climate,” in Collection of Scientific Works of the All-Russian Scientific and Practical Conference “Problems of Aviation Equipment Operation under Modern Conditions” (2016), pp. 241–245.
4. S. V. Akolzin and A. I. Frolov, “Restoring the performance of heat-resistant aviation glazing during repair and operation,” Aviat. Ind. (1),,21–26 (2014).
5. A. P. Vladimirov, I. S. Kamentsev, N. A. Drukarenko, V. N. Trishin, L. A. Akashev, and A. V. Druzhinin, “Assessing fatigue damage in organic glass using optical methods,” Opt. Spectrosc. 127(5), 943–953 (2019).
6. P. V. Pavlov, I. E. Vol’f, and A. A. Balashov, “Device for nondestructive control of window components of aircraft cabins,” in Collection of Scientific Works of the All-Russian Scientific and PracticalConference “Problems of Aviation Equipment Operation under Modern Conditions” (2019), pp. 243–247.
7. V. V. Dyomin, A. I. Gribenyukov, A. Davydova, M. M. Zinoviev, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovtsev, and N. N. Yudin, “Holography of particles for diagnostics tasks,” Appl. Opt. 58(34), G300–G310 (2019).
8. V. V. Dyomin, A. I. Gribenyukov, S. N. Podzyvalov, N. N. Yudin, M. M. Zinoviev, I. G. Polovtsev, A. Davydova, and A. S. Olshukov, “Application of infrared digital holography for characterization of inhomogeneities and voluminous defects of single crystals on the example of ZnGeP2 ,” Appl. Sci. 10(2), 442 (2020).
9. U. Schnars and W. Juptner, Digital Hologram Recording: Numerical Reconstruction and Related Techniques (Springer, Berlin, 2005).
10. V. V. Dyomin, A. S. Olshukov, E. Yu. Naumova, and N. G. Melnik, “Digital holography of plankton,” Atmos. Oceanic Opt. 21(12), 951–956 (2008).
11. V. V. Dyomin and D. V. Kamenev, “Quality criteria for holographic images of particles of various shapes,” Russ. Phys. J. 53(9), 927–935 (2010).
12. S. N. Koreshev, D. S. Smorodinov, O. V. Nikanorov, and M. A. Frolova, “Distribution of the complex amplitude and intensity in a 3D scattering pattern formed by the optical system for an on-axis point object,” Comput. Opt. 42(3), 377–384 (2018).
13. M. Born and E. Wolf, Principles of Optics (Nauka, Moscow, 1973).
14. M. Miller, Holography (Mashinostroenie, Leningrad, 1979).
15. Yu. A. Belokopytov, A. P. Vorob’ev, and V. A. Goncharov, Specifics of Observation and Measurement of Objects with High Spatial Resolution Detected on Gabor Holograms (Institut Fiziki Vysokikh Energii, Serpukhov, 1986).