DOI: 10.17586/1023-5086-2022-89-02-60-67
УДК: 535, 617.7, 628.9
A heterodyne straightness interferometer with reduced periodic nonlinearities
Full text on elibrary.ru
Publication in Journal of Optical Technology
Tao Jin, Mengying Han, Yanfen Le, Jinglin Liu, Wenmei Hou, Lihua Lei, Bo Zhang. A heterodyne straightness interferometer with reduced periodic nonlinearities (Гетеродинный интерферометрический измеритель прямолинейности с уменьшенной периодической нелинейностью) [на англ. яз.] // Оптический журнал. 2022. Т. 89. № 2. С. 60–67. http://doi.org/10.17586/1023-5086-2022-89-02-60-67
Tao Jin, Mengying Han, Yanfen Le, Jinglin Liu, Wenmei Hou, Lihua Lei, Bo Zhang. A heterodyne straightness interferometer with reduced periodic nonlinearities (Гетеродинный интерферометрический измеритель прямолинейности с уменьшенной периодической нелинейностью) [in English] // Opticheskii Zhurnal. 2022. V. 89. № 2. P. 60–67. http://doi.org/10.17586/1023-5086-2022-89-02-60-67
Tao Jin, Mengying Han, Yanfen Le, Jinglin Liu, Wenmei Hou, Lihua Lei, and Bo Zhang, "Heterodyne straightness interferometer with reduced periodic nonlinearities," Journal of Optical Technology. 89(2), 107-112 (2022). https://doi.org/10.1364/JOT.89.000107
A straightness heterodyne interferometer is proposed for measuring the straightness of a linear motion stage along its moving direction. The interferometer uses Koster prism as the beam splitter and combiner, a wedge prism as straightness sensor and a wedge mirror as reflector. The interferometric beams have a completely common optic path and space symmetrical measurement structure. The crosstalk errors, from other degrees of freedom, are eliminated due to the spatial symmetry optical path structure. While, the periodic nonlinearities due to the mixedfrequency cannot be eliminated by the optical configuration. To overcome this problem, we derived a periodic nonlinearities correction model. The coefficients of model are previously estimated by splitting the straightness measurement beam into two beams through a polarization beam splitter which placed at 45°. Afterwards, the model can be used to compensate the nonlinearities of straightness measurement. The results show that the nonlinear error is reduced to the resolution limitation of the straightness interferometer.
straightness interferometer, periodic nonlinearities, common optic path, nonlinearities correction model
Acknowledgements:This work is support by National Natural Science Foundation of China (NSFC) 51705324 and 51605297.
OCIS codes: 01.0010, 350.050
References:1. Evans C.J., Holmes M., Demarest F. et al. Metrology and calibration of a long travel stage // CIRP Annals. 2005. V. 54. № 1. P. 495–498.
2. Naeim I., Khodier S. Nanometer positioning accuracy over a long term traveling stage based on heterodyne interferometry // International Journal of Metrology and Quality Engineering. 2012. V. 3. № 2. P. 97–100.
3. Chen B., Cheng L., Yan L. et al. A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology // Review of Scientific Instruments. 2017. V. 88. № 3. P. 035114.
4. Wu C. A generalized, periodic nonlinearity-reduced interferometer for straightness measurements // Review of Scientific Instruments. 2008. V. 79. № 6. P. 065101.
5. Jin T., Ji H., Hou W. et al. Measurement of straightness without abbe error using an enhanced differential plane mirror interferometer // Applied Optics. 2017. V. 56. № 3. P. 607–610.
6. Quenelle R.C. Nonlinearity in interferometric measurements // Hewlett-Packard J. 1983. V. 34. № 4. P. 3–13.
7. Sutton C.M. Non-linearity in length measurement using heterodyne laser michelson interferometry // Journal of Physics E: Scientific Instruments. 1987. V. 20. № 10. P. 1290–1292.
8. Hou W., Zhao X. Drift of nonlinearity in the heterodyne interferometer // Precision Engineering. 1994. V. 16. № 1. P. 25–35.
9. Wu C., Su C. Nonlinearity in measurements of length by optical interferometry // Measurement Science and Technology. 1996. V. 7. № 1. P. 62–68.
10. Lay O. P., Dubovitsky S. Polarization compensation: a passive approach to a reducing heterodyne interferometer nonlinearity // Optics Letters. 2002. V. 27. № 10. P. 797–799.
11. Hou W. Optical parts and the nonlinearity in heterodyne interferometers // Precision Engineering. 2006. V. 30. № 3. P. 337–346.
12. Eom T.B., Kim J.A., Kang C. et al. A simple phase-encoding electronics for reducing the nonlinearity error of a heterodyne interferometer // Measurement Science and Technology. 2008. V. 19. № 7. P. 075302.
13. Joo K.N., Ellis J.D., Spronck J.W. et al. Simple heterodyne laser interferometer with sub-nanometer periodic errors // Optics Letters. 2009. V. 34. № 3. P. 386–388.
14. Hou W., Zhang Y., Hu H. A simple technique for eliminating the nonlinearity of a heterodyne interferometer // Measurement Science and Technology. 2009. V. 20. № 10. P. 105303.
15. Joo K., Ellis J.D., Buice E.S. et al. High resolution heterodyne interferometer without detectable periodic nonlinearity // Optics Express. 2010. V. 18. № 2. P. 1159–1165.
16. Ellis J.D., Meskers A.J.H., Spronck J.W. et al. Fiber-coupled displacement interferometry without periodic nonlinearity // Optics Letters. 2011. V. 36. № 18. P. 3584–3586.
17. Leach R.K., Claverley J.D., Giusca C. et al. Advances in engineering nanometrology at the national physical laboratory // Measurement Science and Technology. 2012. V. 23. № 7. P. 074002.
18. Meskers A.J.H., Spronck J.W., Schmidt R.H.M. Validation of separated source frequency delivery for a fiber-coupled heterodyne displacement interferometer // Optics Letters. 2014. V. 39. № 15. P. 4603–4606.
19. Meskers A.J.H., Spronck J.W., Schmidt R.H.M. Heterodyne displacement interferometer insensitive for input polarization // Optics Letters. 2014. V. 39. № 7. P 1949–1952.
20. Badami V.G., Patterson S.R. A frequency domain method for the measurement of non- linearity in heterodyne interferometry // Precision Engineering. 2000. V. 24. № 1. P. 41–49.