DOI: 10.17586/1023-5086-2022-89-03-42-46
УДК: 535.42, 778.38
Recording of color three-dimensional holograms on photopolymer in sequential exposure mode continuous lasers
Full text on elibrary.ru
Publication in Journal of Optical Technology
Смык А.Ф., Шурыгин А.В., Одиноков С.Б., Путилин А.Н. Запись цветных трехмерных голограмм на фотополимере в режиме последовательной экспозиции непрерывными лазерами // Оптический журнал. 2022. Т. 89. № 3. С. 42–46. http://doi.org/10.17586/1023-5086-2022-89-03-42-46
Smyk A.F., Shurygin A.V., Odinokov S.B., Putilin A.N. Recording of color three-dimensional holograms on photopolymer in sequential exposure mode continuous lasers [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 3. P. 42–46. http://doi.org/10.17586/1023-5086-2022-89-03-42-46
A. F. Smyk, A. V. Shurygin, S. B. Odinokov, and A. N. Putilin, "Recording of color three-dimensional holograms on photopolymer in sequential exposure mode continuous lasers," Journal of Optical Technology. 89(3), 151-154 (2022). https://doi.org/10.1364/JOT.89.000151
Subject of study. A device for recording color volume holograms (with Bragg gratings) is presented. Its scheme is based on the joint object channel for three red–green–blue colors. Main results. A scheme with sequential exposure is proposed, which makes it possible to use one spatial light modulator. The scheme is more compact and more resistant to vibration and air currents. A scheme for recording synthesized holograms in sequential exposure mode with vertical position of the recording medium is presented. It ensures the quality and volume properties of the reconstructed three-dimensional images, which are sufficient for continuity of their perception. The possibility of using white light for reconstruction of the volume holographic image recorded using the proposed scheme is confirmed. Practical significance. The scheme for recording color volume holograms presented in this study makes it possible to record holograms with full parallax by sequential exposure of different distributions for each color using continuous lasers with acoustic-optic modulation.
holography, three-dimensional hologram, photopolymer, laser
OCIS codes: 090.7330, 090.1705
References:1. Yamaguchi M., Ohyama N., Honda T. Holographic 3D printer // Practical Holography / ed. by Benton S.A. Proc. SPIE – The Internat. Soc. Opt. Eng. 1990. V. 1212. P. 84–90.
2. Morozov A., Putilin A., Kopenkin S., Borodin Y., Druzhin V., Dubynin S., Dubinin G. 3D holographic printer: Fast printing approach // Opt. Exp. 2014. V. 22. № 3. P. 2193–2206.
3. Gentet Y., Gentet P. CHIMERA, a new holoprinter technology combining low-power continuous lasers and fast printing // Appl. Opt. 2019. V. 58. № 34. P. 1–5.
4. Sazonov Y., Gradova O., Zacharovas S., Bakanas R., Gudaitis G., Ratcliffe D.B. Advance in digital holography // 7th Internat. Symp. Display Holography. 2006. P. 65–69.
5. V. N. Borisov, R. A. Okun’, A. E. Angervaks, G. N. Vostrikov, N. V. Murav’ev, and M. V. Popov, “Specific features of multiexposure recording of holographic gratings in Bayfol photopolymer,” in Proceedings of Holoexpo2020, the XVII International Conference on Holography and Applied Optical Technology (2020), pp. 271–275.
6. Hong K., Park S., Yeom J., Kim J., Chen N., Pyun K., Choi C., Kim S., An J., Lee H., Chung U., Lee B. Resolution enhancement of holographic printer using a hogel overlapping method // Opt. Exp. 2013. V. 21. № 12. P. 14047–14055.
7. Chen J.S., Chu D., Smithwick Q.Y. Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling // J. Electronic Imaging. 2014. V. 23. № 2. P. 023016.
8. Pyun K., Putilin A., Morozov A., Sung G. Holographic 3D printing apparatus and method of driving the same // US Patent 9,213,312. 2015.