ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-03-47-55

УДК: 53.06

Using molecular marking in security holograms

For Russian citation (Opticheskii Zhurnal):

Губарев А.П., Шалыгин А.Н., Сарычев А.К., Иванов А.В., Быков И.В., Кузнецов А.С., Одиноков С.Б., Смык А.Ф. Использование молекулярной маркировки в защитных голограммах // Оптический журнал. 2022. Т. 89. № 3. С. 47–55. http://doi.org/10.17586/1023-5086-2022-89-03-47-55

 

Gubarev A.P., Shalygin A.N., Sarychev A.K., Ivanov A.V., Bykov I.V., Kuznetsov A.S., Odinokov S.B., Smyk A.F. Using molecular marking in security holograms [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 3. P. 47–55. http://doi.org/ 10.17586/1023-5086-2022-89-03-47-55

For citation (Journal of Optical Technology):

A. P. Gubarev, A. N. Shalygin, A. K. Sarychev, A. V. Ivanov, I. V. Bykov, A. S. Kuznetsov, S. B. Odinokov, and A. F. Smyk, "Using molecular marking in security holograms," Journal of Optical Technology. 89(3), 155-160 (2022). https://doi.org/10.1364/JOT.89.000155

Abstract:

Subject of study. The capabilities of the technologies for marking products and security holograms based on the analysis of the spectral properties of molecular structures introduced to the holograms are considered in combination with the adoption of quantum dots and magnetic microparticles (MPs). The primary focus is on the issues of the analysis of the Raman spectra of molecules excited by plasmonic-resonant electromagnetic fields. Method. Modern technologies for hologram security are based on the use of various protective optical effects concealed from visual observation. These effects reveal themselves only under the relevant illumination of holograms when specialized optical equipment is employed. Unique methods for marking and identification of holograms using the magneto-optical, fluorescent, and spectral properties of the emission of MPs and molecular structures with sizes ranging from tens of nanometers to tens of micrometers, which are excited by localized electromagnetic fields, are considered. The plasmonic-resonant methods for the excitation of marking molecular labels introduced into the hologram structures are the most relevant, together with the arising spectra of surface-enhanced Raman scattering that are used for the identification and authenticity verification of the holograms. Main results. The use of plasmonic-resonant methods for concentrating electromagnetic fields for the excitation of marking molecular labels was demonstrated to be able to ensure the amplification of their Raman emission by several orders of magnitude, which results in the significant enhancement of recognizability and identification of security holograms. Practical significance. The technologies for hologram protection proposed in this work are based on the combination of different types of markings such as hidden holographic images, magneto-optical and fluorescent images of MPs, and Raman spectra of molecular structures that are enhanced by plasmonic-resonant methods. These technologies significantly increase the reliability, security, and authenticity of the marking and its identification. The results of this study will help in forming the basic technical requirements for design of portable devices for the identification of security hologram markings.

Keywords:

security hologram, plasmonic resonance, surface-enhanced Raman scattering, hologram marking

Acknowledgements:

The work was supported by RFBR grant No. 20-21-00080.

OCIS codes: 170.5660, 250.5403

References:

1. I. M. Lancaster, “Holography: past, present and future,” Hologr. News 23(6), 1–10 (2009).
2. S. B. Odinokov, Methods and Optoelectronic Devices for Automatic Control of the Authenticity of Security Holograms (Tekhnosfera, Moscow, 2013).
3. V. I. Bobrinev, D. S. Lushnikov, A. I. Nikolaev, S. B. Odinokov, and I. K. Tsyganov, “Getting and reading holograms with hidden images,” Vestn. Mosk. Gos. Tekh Univ. im. N. E. Baumana, Ser. Priborostr. 1(54), 37–55 (2004).
4. S. Wang, S. Huang, X. Zhang, and W. Wu, “Hologram-based water-marking capable of surviving print-scan process,” Appl. Opt. 49(7), 1170–1178 (2010).
5. L. Tu and S. Zhong, “Research on coding and decoding method for digital levels,” Appl. Opt. 50(3), 356–359 (2011).
6. S. M. Bobovkin and Ya. M. Sizova, “Recognition of modern methods for simulating protective holograms,” Entsikl. Sud. Ekspert. 1(24), 74–85 (2020).
7. A. Y. Shalyapina, M. A. Zaporozhets, V. V. Volkov, O. M. Zhigalina, A. S. Avilov, V. I. Nikolaichik, and S. P. Gubin, “Structural characteristics of nanomaterials based on CdS quantum dots,” Russ. J. Inorg. Chem. 58(1), 74–77 (2013).

8. A. P. Gubarev, A. N. Shalygin, A. D. Shcherbina, A. S. Kuznetsov, and S. B. Odinokov, “Security holograms with latent randomly distributed magnetic microscale particles,” in Proceedings of the IX International Conference on Photonics and Information Optics (2020), pp. 661–662.
9. V. S. Gorelik, “Combinational light scattering,” Sorosovskii Obraz. Zh. 3(6), 91–96 (1997).
10. J. Kneipp, H. Kneipp, B. Wittig, and K. Kneipp, “Novel optical nanosensors for probing and imaging live cells,” Nanomedicine 6(2), 214–226 (2010).
11. A. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B 75(8), 085436 (2007).
12. Y. Liu, F. Han, F. Li, Y. Zhao, M. Chen, Z. Xu, X. Zheng, H. Hu, J. Yao, T. Guo, W. Lin, Y. Zheng, B. You, P. Liu, Y. Li, and L. Qian, “Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication,” Nat. Commun. 10(1), 2409 (2019).
13. B. Chen, H. Zhong, W. Zhang, Z. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, and B. Zou, “Highly emissive and color-tunable CuInS2 -based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
14. X. Zheng, Y. Zhu, Y. Liu, L. Zhou, Z. Xu, C. Feng, C. Zheng, Y. Zheng, J. Bai, K. Yang, D. Zhu, J. Yao, H. Hu, Y. Zheng, T. Guo, and F. Li, “Inkjet-printed quantum dot fluorescent security labels with triple-level optical encryption,” ACS Appl. Mater. Interfaces 13(13), 15701–15708 (2021).
15. A. Sarychev, A. Ivanov, A. Lagarkov, and G. Barbillon, “Light concentration by metal-dielectric micro-resonators for SERS sensing,” Materials 12(103), 103 (2019).
16. G. Barbillon, A. Ivanov, and A. Sarychev, “Hybrid Au/Si disk-shaped nanoresonators on gold film for amplified SERS chemical sensing,” Nanomaterials 9(11), 1588 (2019).
17. S. Odinokov, A. Kuznetsov, and A. Gubarev, “Optoelectronic device for reading of hidden magnetic information from the holograms,” Opt. Mem. Neural Networks (Inf. Opt.) 17(1), 15–22 (2008).
18. K. Magaryan, M. Mikhailov, K. Karimullin, M. Knyazev, I. Eremchev, A. Naumov, I. Vasilieva, and G. Klimusheva, “Spatially-resolved luminescence spectroscopy of CdSe quantum dots synthesized in ionic liquid crystal matrices,” J. Lumin. 169, 799–803 (2016).
19. A. Naumov, “Spectroscopy of single organic dye-molecules and semiconductor quantum dots: basic aspects and applications in nanoscopy,” EPJ Web Conf. 132, 01009 (2017).
20. G. Tselikov, V. Timoshenko, L. Golovan, J. Plenge, A. Shatalova, G. Shandryuk, I. Kutergina, A. Merekalov, E. Ruhl, and R. Talroze, “Role of the polymer matrix on the photoluminescence of embedded CdSe quantum dots,” ChemPhysChem 16(5), 1071–1078 (2015).