ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-08-03-07

УДК: 004.93, 612.84, 612.843.7, 621.397.3

Optical technologies and the visual picture of the world: iconics and neuroiconics

For Russian citation (Opticheskii Zhurnal):

Шелепин Ю.Е., Луцив В.Р., Коротаев В.В. Оптические технологии и зрительная картина мира: иконика и нейроиконика // Оптический журнал. Т. 89. № 8. С. 3–7. http://doi.org/10.17586/1023-5086-2022-89-08-03-07

 

Yu.V.Shelepin, Lutsiv V.R., Korotaev V.V. Optical technologies and the visual picture of the world: iconics and neuroiconics [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 8. P. 3–7. http://doi.org/10.17586/1023-5086-2022-89-08-03-07 

For citation (Journal of Optical Technology):

Yu. E. Shelepin, V. R. Lutsiv, and V. V. Korotaev, "Optical technologies and the visual picture of the world: iconics and neuroiconics," Journal of Optical Technology. 89(8), 434-436 (2022). https://doi.org/10.1364/JOT.89.000434

Abstract:

A definition of neuroiconics is proposed as a branch of science at the intersection of human and animal physiology and iconics that studies neurophysiological processes and algorithms for processing video information and evaluates the possibility of using these algorithms in technical systems.

Keywords:

neuroiconics, iconics, neurophysiological processes, visual brain, video information processing algorithms

OCIS codes: 100.0100, 100.2960, 110.0110, 150.0150, 330.0330

References:

1. V. K. Zvorykin, “The iconoscope—a modern version of the electric eye,” Proc. IRE 22, 16–32 (1934).
2. V. K. Zvorykin, “Iconoscopes and kinescopes in television,” RCA Review 1, 60–84 (1936).
3. https://ru.wikipedia.org/wiki/%D0%98%D0%BA%D0%BE%D0% BD%D0%B8%D0%BA%D0%B0.
4. M. M. Miroshnikov, V. F. Nesteruk, and N. N. Porfir’eva, “Iconics and its main tasks,” Opt.-Mekh. Prom-st. 6, 3–7 (1977).
5. V. D. Glezer and I. I. Zukkerman, Information and Vision (USSR Academy of Sciences, Moscow, 1961).
6. D. S. Lebedev and I. I. Zukkerman, Television and Information Theory (Energiya, Moscow, 1965).
7. F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186(3), 558–578 (1966).
8. F. W. Campbell and J. G. Robson, “Application of Fourier analyses to the visibility of gratings,” J. Physiol. (London) 197, 551–566 (1968).
9. M. M. Miroshnikov, “Iconics, image processing and perception,” Tr. Gos. Opt. Inst. 51(185), 3–6 (1982).
10. D. S. Lebedev and N. R. Popova, eds., Iconics: Theory and Methods of Image Processing (Nauka, Moscow, 1983).
11. N. N. Krasilnikov, Theory of Transmission and Perception of Images (Radio i Svyaz’, Moscow, 1986).
12. M. M. Miroshnikov, Iconics in Physiology and Medicine (Nauka, Leningrad, 1987).
13. M. M. Miroshnikov and V. F. Nesteruk, “Further development of the methodological foundations of iconics,” Tr. Gos. Opt. Inst. 64(198), 5–11 (1987).
14. M. M. Miroshnikov, Theoretical Foundations of Optical-Electronic Devices, 3rd ed. (Lan’, St. Petersburg, 2010).
15. V. V. Alexandrov and N. D. Gorsky, Representation and Processing of Images: Recursive Approach (Nauka, Leningrad, 1985).
16. Yu. E. Shelepin, L. N. Kolesnikova, and Yu. I. Levkovich, Visocontrastometry (Measurement of Modulation Transfer Functions of the Visual System) (Nauka, Leningrad, 1985).

17. T. Kohonen, Self-Organization and Associative Memory (Springer-Verlag, Berlin, 1988).
18. N. N. Krasilnikov and Yu. E. Shelepin, “Functional model of vision,” J. Opt. Technol. 64(2), 72–82 (1997) [Opt. Zh. 64(2), 72–82 (1997)].
19. H. B. Barlow, “The neurologic of matching filters,” J. Opt. Technol. 66(9), 776–781 (1999) [Opt. Zh. 66(9), 9–16 (1999)].
20. D. J. Field, “Match filters, wavelets and the statistics of natural scenes,” J. Opt. Technol. 66(9), 788–796 (1999) [Opt. Zh. 66(9), 25–36 (1999)].
21. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. 4, 2379–2394 (1987).
22. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Addison-Wesley, Boston, 2001).
23. V. D. Glezer, Vision and Mind: Modeling Mental Functions (Psychology Press, New York, 1995) [Vision and Thinking (Nauka, St. Petersburg, 1993)].
24. V. A. Barabanschikov, Dynamics of Visual Perception (Nauka, Moscow, 1990).
25. V. A. Barabanschikov, Perception and Event (Aleteyya, Moscow, 2002).
26. V. Lutsiv, I. Malyshev, and A. Potapov, “Hierarchical structural matching algorithms for registration of aerospace images,” Proc. SPIE 5238, 164–175 (2003).
27. I. Aleksander, The World in My Mind, My Mind in the World: Key Mechanisms of Consciousness in Humans, Animals and Machines (London, 2005).
28. M. M. Miroshnikov, “Foreword from the editor of this issue,” J. Opt. Technol. 78(12), 765–766 (2011) [Opt. Zh. 78(12), 3–4 (2011)].
29. V. Lutsiv, Automatic Image Analysis. Object-Independent Structural Approach (Lambert Academic Publishing, Saarbrücken, Germany, 2011).
30. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (John Wiley & Sons, New York, 2012).
31. V. Lutsiv, “Convolutional deep-learning artificial neural networks,” J. Opt. Technol. 82(8), 499–508 (2015) [Opt. Zh. 82(8), 11–23 (2015)].
32. V. A. Barabanschikov, Dynamics of Perception of Facial Expressions (Kogitotsentr, Moscow, 2016).
33. P. Sterling and S. Laughlin, Principles of Neural Design (MIT Press, Cambridge, London, 2017).
34. Yu. E. Shelepin, Introduction to Neuroiconics: Monograph (Troitsky Most, St. Petersburg, 2017).
35. R. O. Malashin, Structural Analysis of Images of Three-Dimensional Scenes (Lambert Academic Publishing, Saarbrücken, Germany, 2018).
36. A. K. Tsytsulin, Television and Space, A. K. Tsytsulin, ed. (LETI, St. Petersburg, 2003).
37. A. K. Tsytsulin, A. I. Bobrovski˘ı, A. V. Morozov, V. A. Pavlov, and M. A. Galeeva, “Using convolutional neural networks to automatically select small artificial space objects on optical images of a starry sky,” J. Opt. Technol. 86(10), 627–633 (2019) [Opt. Zh. 86(10), 30–38 (2019)].
38. R. O. Malashin, “Principle of least action in dynamically configured image analysis systems,” J. Opt. Technol. 86(11), 678–685 (2019) [Opt. Zh. 86(11), 5–13 (2019)].
39. R. O. Malashin, “Sparsely ensembled convolutional neural network classifiers via reinforcement learning,” in Proceedings of the 2021 6th International Conference on Machine Learning Technologies (2021), pp. 102–110.