DOI: 10.17586/1023-5086-2022-89-09-30-35
УДК: 620.179.118.4
Reflectivity of optical glasses in the mid-infrared spectral range in a humid atmosphere
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Парамонова О.Л., Шардаков Н.Т. Отражательная способность оптических стекол во влажной атмосфере в среднем инфракрасном диапазоне спектра // Оптический журнал. 2022. Т. 89. № 9. С. 30–35. http://doi.org/ 10.17586/1023-5086-2022-89-09-30-35
Paramonova O.L., Shardakov N.T. Reflectivity of optical glasses in the mid-infrared spectral range in a humid atmosphere [in Russian] // Opticheskii Zhurnal. 2022. V.89. № 9. P. 30-35. http://doi.org/ 10.17586/1023-5086-2022-89-09-30-35
O. L. Paramonova and N. T. Shardakov, "Reflectivity of optical glasses in the mid-infrared spectral range in a humid atmosphere," Journal of Optical Technology. 89(9), 524-527 (2022). https://doi.org/10.1364/JOT.89.000524
Subject of study. Variations in the reflection coefficients of mid-infrared radiation from the surfaces of silicate, borosilicate, and lead-borate optical glasses after their contact with a humid atmosphere were investigated. Aim of study. The study was aimed at analyzing and interpreting infrared spectra of optical glasses after their prolonged exposure to a humid atmosphere. Method. Glasses with a surface polish quality of grade II were stored in hermetically sealed containers at a temperature of 23°C and relative atmospheric humidity of 25% and 65% for 20 to 42 days and then stored in an atmosphere with a humidity of 95% at a temperature of 50°C. A part of the samples was processed in a hexamethyldisilazane vapor to form a hydrophobic coating. Infrared spectra of the samples were recorded in the wavenumber range of 400−4000cm−1 using a Nicolet iS10 Fourier spectrometer. Main results. The changes in the reflection coefficients are attributed to variation in the chemical composition of the surface layer of the optical glasses after their interaction with a humid atmosphere. Practical significance. The obtained results can be applied for the development of technology to increase the chemical resistances of optical glasses in a humid atmosphere.
optical glass, humidity, capillary condensation, glass dissolution, reflection coefficient
OCIS codes: 240.5770
References:1. E. A. Paukshtis, Optical Spectroscopy in Adsorption and Catalysis: Application of IR Spectroscopy (Institut Kataliza im. G. N. Boreskova, Novosibirsk, 2010).
2. A. A. Belyustin, V. M. Zolotarev, S. Kh. Akopyan, T. Yu. Zhitova, O. V. Zolotareva, and I. S. Ivanovskaya, “A study of surface glass layers by attenuated total reflectance IR spectroscopy,” Fiz. Khim. Stekla 12(6), 691–697 (1986).
3. S. Yu. Balashova, G. I. Baranova, A. A. Belyustin, D. N. Glebovskii, and I. S. Ivanovskaya, “IR spectroscopic investigation of interaction between sodium aluminosilicate electrode glasses and aqueous solutions,” Glass Phys. Chem. 26(5), 499–505 (2000) [Fiz. Khim. Stekla 26(5), 718–727 (2000)].
4. I. N. Yashchishin, L. V. Zhuk, and O. I. Kozii, “Investigation of the structural transformations in nitrided layers of optical lead silicate glasses by infrared reflection spectroscopy,” Glass Phys. Chem. 33(2), 140–143 (2007) [Fiz. Khim. Stekla 33(2), 196–200 (2007)].
5. O. L. Paramonova, N. T. Shardakov, and D. Yu. Kruchinin, “Changes in the surface roughness of optical glasses in a humid environment,” J. Opt. Technol. 87(9), 558–561 (2020) [Opt. Zh. 87(9), 76–82 (2020)].
6. O. L. Paramonova, N. T. Shardakov, and D. Yu. Kruchinin, “Surface studies of optical glasses by white-light interferometry,” J. Opt. Technol. 88(1), 55–59 (2021) [Opt. Zh. 88(1), 76–81 (2021)].
7. GOST 3514-94, “Colorless Optical Glass. Technical Specifications,” (Izdatel’stvo Standartov, Minsk, 1996).
8. W. M. Moreau, Microlithography, Part 1 (Mir, Moscow, 1990).
9. V. I. Vettegren’, R. I. Mamalimov, G. A. Sobolev, S. M. Kireenkova, Yu. A. Morozov, and A. I. Smul’skaya, “IR spectroscopy of quartz nanocrystals formed during intense crushing of a heterogeneous material (granite),” Phys. Solid State 53(12), 2495–2499 (2011).
10. G. V. Saidov and E. V. Bernshtein, “Optical constants of the surface layer in fused silica in the range 900–1300 cm−1 ,” Fiz. Khim. Stekla 8(1), 75–81 (1982).
11. V. M. Zolotarev, V. N. Morozov, and E. V. Smirnova, Optical Constants of Natural and Technical Media (Khimiya, Leningrad, 1984).
12. A. M. Efimov, B. A. Mikhailov, and T. G. Arkatova, “IR spectra of borate glasses and their structural interpretation,” Fiz. Khim. Stekla 5(6), 692–701 (1979).
13. B. A. Mikhailov, T. G. Arkatova, and A. M. Efimov, “Quantitative measurements of IR reflection spectra and calculation of the optical constants of borate glasses,” Fiz. Khim. Stekla 5(6), 681–691 (1979).
14. L. I. Demkina, Physical-Chemical Principles of Optical Glass Production (Khimiya, Leningrad, 1976).
15. E. V. Baranov and T. I. Shelkovnikova, “Thermodynamic and structural assessment of the transformation of the silicate mesh and glass surface under the influence of water and water vapor,” Vestn. BGTU im. V. G. Shukhova (7), 37–40 (2016).
16. Yu. Yu. Kudriavtsev, R. Asomoza-Palacio, and L. Manzanilla-Naim, “Interaction of water vapor with silicate glass surfaces: massspectrometric investigations,” Tech. Phys. Lett. 43(5), 447–449 (2017) [Pis’ma Zh. Tekh. Fiz. 43(9), 75–82 (2017)].
17. A. A. Bochkarev and V. I. Polyakova, “Sorption hysteresis on microrough surfaces,” J. Appl. Mech. Tech. Phys. 53(2), 198–206 (2012) [Prikl. Mekh. Tekh. Fiz. 53(2), 61–71 (2012)].