ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-09-59-65

УДК: 535.3, 621.327.2, 621.38

Radiation source with enhanced virucide effectiveness based on a mixture of helium and iodine vapor

For Russian citation (Opticheskii Zhurnal):

Ломаев М.И., Тарасенко В.Ф., Кузнецов В.С. Источник излучения с повышенной вирулицидной эффективностью на основе смеси гелия с парами йода // Оптический журнал. 2022. Т. 89. № 9. С. 59–65. http://doi.org/ 10.17586/1023-5086-2022-89-09-59-65

 

Lomaev M.I., Tarasenko V.F., Kuznetsov V.S. Radiation source with enhanced virucide effectiveness based on a mixture of helium and iodine vapor [in Russian] // Opticheskii Zhurnal. 2022. V.89. № 9. P. 59-65. http://doi.org/10.17586/1023-5086-2022-89-09-59-65

For citation (Journal of Optical Technology):

M. I. Lomaev, V. F. Tarasenko, and V. S. Kuznetsov, "Radiation source with enhanced virucide effectiveness based on a mixture of helium and iodine vapor," Journal of Optical Technology. 89(9), 544-548 (2022). https://doi.org/10.1364/JOT.89.000544

Abstract:

Subject of study. A source of spontaneous emission (a lamp) in the ultraviolet spectral range excited by a capacitive discharge was investigated. Iodine vapor and mixtures of iodine vapor with inert gases were used as the operating gas medium of the lamp. Conditions for enhancements in specific output parameters of the lamp emission were investigated. Excitation conditions under which the lamp emits predominantly at the iodine atomic line with a wavelength of 206.16 nm were determined. Aim of study. The primary aim of the study was to investigate the spectral and energy characteristics of the lamp based on the iodine vapor, which is promising for the development of a radiation source with enhanced virucidal effectiveness for ultraviolet disinfection of a human environment contaminated with pathogenic microorganisms including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Method. In this study, the composition and pressure of the operating medium were optimized. In addition, the excitation mode of the lamp emission was optimized by changing the repetition rate of voltage pulses. Main results. At a specific excitation power of approximately 1.3mW/cm3 and partial pressures of iodine vapor and helium of approximately 2.5 and 7 Torr, respectively, the line of an iodine atom with a wavelength of 206.16 nm dominates in the output lamp spectrum, and the specific emission power at the outer surface of the lamp tube is approximately 3mW/cm2. Practical significance. The emission of the investigated lamp is in the spectral range of 200–225 nm, which is promising in terms of developing technology for safe ultraviolet inactivation of pathogenic microorganisms including SARS-CoV-2.

Keywords:

ultraviolet lamp, ultraviolet inactivation, capacitive discharge, iodine vapors

Acknowledgements:
the work was carried out within the framework of the State Assignment of the ISE SB RAS, draft No. FWRM-2021-0014

OCIS codes: 230.6080, 260.7190

References:

1. M. Raeiszadeh and B. Adeli, “A critical review on ultraviolet disinfection systems against COVID-9 outbreak: applicability, validation, and safety considerations,” ACS Photonics 7(11), 2941–2951 (2020).

2. M. Heßling, K. Hönes, P. Vatter, and C. Lingenfelder, “Ultraviolet irradiation doses for coronavirus inactivation—review and analysis of coronavirus photoinactivation studies,” GMS Hyg. Infect. Control 15, 08 (2020).

3. Z. Michelini, C. Mazzei, F. Magurano, M. Baggieri, A. Marchi, M. Andreotti, A. Cara, A. Gaudino, M. Mazzalupi, F. Antonelli, L. Sommella, S. Angeletti, E. Razzano, A. Runge, and P. Petrinca, “UltraViolet SANitizing system for sterilization of ambulances fleets and for real-time monitoring of their sterilization level,” Int. J. Environ. Res. Public Health 19, 331 (2022).

4. É. A. Sosnin, V. S. Skakun, V. A. Panarin, S. M. Avdeev, and D. A. Sorokin, “Shortwave excilamps as effective sources of radiation for inactivation of viruses and bacteria,” J. Opt. Technol. 88(10), 587–592 (2021) [Opt. Zh. 88(10), 50–58 (2021)].

5. S. K. Bhardwaj, H. Singh, A. Deep, M. Khatri, J. Bhaumik, K. Kim, and N. Bhardwaj, “UVC-based photoinactivation as an efficient tool to control the transmission of coronaviruses,” Sci. Total Environ. 792, 148548 (2021).

6. K. Narita, K. Asano, K. Naito, H. Ohashi, M. Sasaki, Y. Morimoto, T. Igarashi, and A. Nakane, “Ultraviolet C light with wavelength of 222-nm UVC inactivates a wide spectrum of microbial pathogens,” J. Hosp. Infect. 105(3), 459–467 (2020).

7. H. Kitagawa, T. Nomura, T. Nazmul, K. Omori, N. Shigemoto, T. Sakaguchi, and H. Ohge, “Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination,” Am. J. Infect. Control 49(3), 299–301 (2021).

8. M. Buonanno, D. Welch, I. Shuryak, and D. J. Brenner, “Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses,” Sci. Rep. 10(1), 10285 (2020).

9. S.-J. Kim, D.-K. Kim, and D.-H. Kang, “Using UVC light-emitting diodes at wavelengths of 266 to 279 nanometers to inactivate foodborne pathogens and pasteurize sliced cheese,” Appl. Environ. Microbiol. 82(1), 11–17 (2016).

10. U. Kogelschatz, “Excimer lamps: history, discharge physics, and industrial applications,” Proc. SPIE 5483, 272–286 (2004).

11. A. M. Boichenko, M. I. Lomaev, A. N. Panchenko, E. A. Sosnin, and V. F. Tarasenko, Ultraviolet and Vacuum-Ultraviolet Excilamps: Physics, Technology, and Applications (STT, Tomsk, 2011).

12. M. I. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, D. V. Shitts, and M. V. Erofeev, “Excilamps: efficient sources of spontaneous UV and VUV radiation,” Phys.-Usp. 46(2), 193 (2003) [Usp. Fiz. Nauk 173(2), 201–217 (2003)].

13. E. A. Sosnin and O. S. Zhdanova, “Viricidal and bactericidal exciplex barrier-discharge lamps,” Quantum Electron. 50(10), 984–988 (2020).

14. M. Buonanno, D. Welch, and D. J. Brenner, “Exposure of human skin models to KrCl excimer lamps: the impact of optical filtering,” Photochem. Photobiol. 97, 517–523 (2021).

15. M. Hessling, R. Haag, N. Sieber, and P. Vatter, “The impact of far-UVC radiation (200–230 nm) on pathogens, cells, skin, and eyes—a collection and analysis of a hundred years of data,” GMS Hyg. Infect. Control 16, 07 (2021).

16. M. Buonanno, B. Ponnaiya, D. Welch, M. Stanislauskas, G. Randers Pehrson, L. Smilenov, F. D. Lowy, D. M. Owens, and D. J. Brenner, “Germicidal efficacy and mammalian skin safety of 222-nm UV light,” Radiat. Res. 187(4), 493–501 (2017).

17. K. Narita, K. Asano, Y. Morimoto, T. Igarashi, and A. Nakane, “Chronic irradiation with 222 nm UVC light induces neither DNA damage nor epidermal lesions in mouse skin, even at high doses,” PLoS One 13(7), e0201259 (2018).

18. N. Gao, J. Chen, X. Feng, S. Lu, W. Lin, J. Li, H. Chen, K. Huang, and J. Kang, “Strain engineering of digitally alloyed AlN/GaN nanorods for far-UVC emission as short as 220 nm,” Opt. Mater. Express 11(4), 1282–1291 (2021).

19. C. C. Kiess and C. H. Corliss, “Description and analysis of the first spectrum of iodine,” J. Res. Natl. Bur. Stand. Sect. A 63A(1), 1–18 (1959).

20. U. Gross, A. Ubelis, P. Spietz, and J. Burrows, “Iodine and mercury resonance lamps for kinetics experiments and their spectra in the far ultraviolet,” J. Phys. D: Appl. Phys. 33, 1588–1591 (2000).

21. M. I. Lomaev, V. S. Skakun, E. A. Sosnin, and V. F. Tarasenko, “Operating gas medium of a plasma lamp,” Russian patent 2154323 C1 (2000).

22. M. I. Lomaev and V. F. Tarasenko, “Xe(He)—I2 glow and capacitive discharge excilamps,” Proc. SPIE 4747, 390–398 (2002).

23. A. K. Shuaibov, A. I. Minya, Z. T. Gomoki, and G. E. Laslov, “Emissivity of the pulsed capacitive discharge in helium-iodine and neon-iodine mixtures,” Tech. Phys. 54(1), 146–150 (2009) [Tekh. Fiz. 79(1), 147–151 (2009)].

24. I. K. Kikoin, Tables of Physical Quantities (Atomizdat, Moscow, 1976).

25. Yu. P. Raizer, Physics of Gas Discharge (Izdatel’skii Dom “Intellekt,” Dolgoprudny, 2009).