DOI: 10.17586/1023-5086-2023-90-06-38-49
УДК: 520.248
Optical radiation polarization analyzer for Takhomag-International Space Station space-based spectromagnetograph
Full text on elibrary.ru
Publication in Journal of Optical Technology
Кожеватов И.Е., Руденчик Е.А., Силин Д.Е., Стукачев С.Е., Куликова Е.Х. Анализатор поляризации для космического спектромагнитографа «Тахомаг-МКС» // Оптический журнал. 2023. Т. 90. № 6. С. 38–49. http://doi.org/10.17586/1023-5086-2023-90-06-38-49
Kozhevatov I.E., Rudenchik E.A., Silin D.E., Stukachev S.E., Kulikova E.Kh.Optical radiation polarization analyzer for Takhomag-International Space Station space-based spectromagnetograph [In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 6. P. 38–49. http://doi.org/10.17586/1023-5086-2023-90-06-38-49
Ilya Kozhevatov, Evgeniy Rudenchik, Dmitry Silin, Sergey Stukachev, and Elena Kulikova, "Optical radiation polarization analyzer for the Takhomag-International Space Station space-based spectromagnetograph," Journal of Optical Technology. 90(6), 310-316 (2023)
Subject of study. The paper describes an optical radiation polarization analyzer developed for the TachomagInternational Space Station spacebased solar spectromagnetograph. The article is the third in the series of articles devoted to the development of a solar magnetograph planned for deployment on the Russian segment of the International Space Station. The first two articles of the series, published earlier in this Journal, describe the solar telescope and the optical diffraction spectrograph, which are also components of the TachomagInternational Space Station spectromagnetograph. Aim of study was to develop a paralleltype polarization analyzer for the TachomagInternational Space Station spectromagnetograph, which when measuring all components of the Stokes vector in selected spectral lines would have the necessary resolution and accuracy as well as speed for studying the dynamics of fast processes in the solar photosphere. Method. The paper presents for the first time a polarization analyzer for a space solar magnetograph, which operates on the principle of simultaneous acquisition of data in all polarizations. A characteristic difference of the device is not only the absence of traditional polarization modulators in the composition, but also rather small overall and weight characteristics, which is important specifically for space devices. Main results. It is shown that even in the space version a parallel polarization analyzer provides spectrum imaging in various polarizations with the required angular resolution of 0.35І according to the Rayleigh criterion in a field of view of 5ў and a spectral resolution of 30 mÅ in the range of 2.52 Å, which corresponds to the characteristics of the solar optical telescope and spectrograph of the Tachomag International Space Station spectromagnetograph. Practical significance. The development of the TachomagInternational Space Station spectromagnetograph will help in solving urgent problems of solar and plasma physics and will create a reserve for preparing for more complex missions related to solar research from close distances.
Acknowledgment: the work was carried out within the framework of the Federal Space Program at the expense of the state contract "ISS (Operation) — Operation3" and was supported by the Ministry of Science and Higher Education of the Russian Federation (Project No. 003020210015).
solar magnetograph, parallel type polarization analyzer, Stokes parameters, calibration, aberration compensation
OCIS codes: 120.5410, 350.1260, 350.6090, 220.4830, 220.1000
References:1. Gibson E.G. The quiet Sun. Washington: National Aeronautics and Space Administration, 1973. 407 p.
2. Zirin H. The Solar atmosphere. Waltham: Blaisdell Publishing Company, 1966. 504 p.
3. Tsuneta S., Ichimoto K., Katsukawa Y. et al. The Solar Optical Telescope for the Hinode Mission: An Overview // Solar Physics. 2008. V. 249. P. 167–196. https://doi.org/10.1007/s11207-008-9174-z
4. Scherrer P.H., Schou J., Bush R.I. et al. The helioseismic and magnetic imager (HMI) investigation for the Solar Dynamics Observatory (SDO) // Solar Physics. 2012. V. 275. P. 207–227. https://doi.org/10.1007/s11207-011-9834-2
5. Cao W., Gorceix N., Coulter R., Ahn K., Rimmele T.R., Goode P.R. Scientific instrumentation for the 1.6 m New Solar Telescope in Big Bear // Astron. Nachr. 2010. V. 331. № 6. P. 636–639. https://doi.org/10.1002/asna.201011390
6. Montilla I., Béchet C., Le Louarn M., Tallon M., Sánchez-Capuchino J., Collados Vera M. Multi-conjugate AO for the European Solar Telescope // Proceedings of the SPIE. Adaptive Optics Systems III. 2012. V. 8447.84475H. https://doi.org/10.1117/12.925744
7. Müller D., St. Cyr O.C., Zouganelis I. et al. The Solar Orbiter mission. Science overview // Astronomy & Astrophysics. 2020. V. 642. A1. https://doi.org/10.1051/0004-6361/202038467
8. Oraevsky V.N., Galeev A.A., Kuznetsov V.D., Zelenyi L.M. Russian payload for “interhelioprobe” (“interhelios”) mission // Advances in Space Research. 2002. V. 29. P. 2041–2050. https://doi.org/10.1016/S0273-1177(02)00149-7
9. Kuznetsov V.D., Zelenyi L.M., Zimovets I.V. et al. The Sun and Heliosphere Explorer — The Interhelioprobe Mission // Geomagnetism and Aeronomy. 2016. V. 56. P. 781–841. https://doi.org/10.1134/S0016793216070124
10. Kozhevatov I.E., Silin D.E., Stukachev S.E. The solar optical telescope for the Takhomag-International Space Station space-based spectromagnetograph // Journal of Optical Technology. 2021. V. 88. P. 520–526. https://doi.org/10.1364/JOT.88.000520
11. Kozhevatov I.E., Rudenchik E.A., Silin D.E., Stukachev S.E., Kulikova E.Kh. Optical spectrograph for the Takhomag-International Space Station space-based spectromagnetograph // Journal of Optical Technology. 2022. V. 89. P. 409–417. https://doi.org/10.1364/JOT.89.000409
12. Kozhevatov I.E., Ioshpa B.A., Obridko V.N., Rudenchik E.A., Kulikova E.Kh. Second version of the IZMIRAN solar spectromagnetograph. Part I. Instrument design // Instruments and Experimental Techniques. 2011. V. 54. P. 568. https://doi.org/10.1134/S0020441211040051
13. Lites B.W., Akin D.L., Card G. et. al. The hinode spectropolarimeter // Solar Physics. 2013. V. 283. P. 579–599. https://doi.org/10.1007/s11207-012-0206-3
14. Hagayard M.J., Kineke J.I. Improved method for calibrating filter vector magnetographs // Solar Physics. 1995. V. 158. P. 11–28. https://doi.org/10.1007/BF00680832
15. Varsik J.R. Calibration of the Big Bear Videomagnetograph // Solar Physics. 1995. V. 161. P. 207–228. https://doi.org/10.1007/BF00732067
16. Skumanich A., Lites B.W, Pillet V.M., Seargraves P. The calibration of the advanced stokes polarimeter // The Astrophysical Journal Supplement Series. 1997. V. 110. P. 357–380. https://doi.org/10.1086/313004
17. Rudenchik E.A., Kozhevatov I.E., Cheragin N.P., Kulikova E.Kh., Bezrukova E.G. Method for absolute calibration of reference plates for interferometric inspection of surfaces // Optics and Spectroscopy. 2001. V. 90. P. 113–120. https://doi.org/10.1134/1.1343555
18. Rudenchik E.A., Obridko V.N., Kozhevatov I.E., Bezrukova E.G. Second version of the IZMIRAN solar spectromagnetograph. Part II. Algorithms for preliminary data processing // Instruments and Experimental Techniques. 2011. V. 54. P. 577. https://doi.org/10.1134/S0020441211040063