ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-09-102-113

УДК: 549.514.51, 620.3, 534.522

Study of nanosized quartz of shungite rocks

For Russian citation (Opticheskii Zhurnal):
Шарпарь Н.Д., Ковальчук А.А., Горюнов А.С., Екимова Т.А., Рожкова Н.Н. Исследование наноразмерного кварца шунгитовых пород // Оптический журнал. 2023. Т. 90. № 9. С. 102–113. http://doi.org/10.17586/1023-5086-2023-90-09-102-113   Sharpar N.D., Kovalchuk A.A., Goryunov A.S., Ekimova T.A., Rozhkova N.N. Study of nanosized quartz of shungite rocks [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 9. P. 102–113. http://doi.org/10.17586/1023-5086-2023-90-09-102-113    
For citation (Journal of Optical Technology):
N. D. Sharpar, A. A. Kovalchuk, A. S. Goryunov, T. A. Ekimova, and N. N. Rozhkova, "Nanosized quartz of shungite rocks," Journal of Optical Technology. 90(9), 553-559 (2023).  https://doi.org/10.1364/JOT.90.000553
Abstract:

Subject of study. Nanoscale quartz isolated from quartz veins of shungite rocks of Karelia. Aim of study. Preparation and study of quartz nanoparticles from shungite rocks, comparison of their structural and spectral characteristics with the characteristics of natural quartz from traditional deposits to assess the use in optics and biomedicine. Method. The studied samples from the quartz veins cutting shungite rocks and the reference samples were prepared in the same way: crushed, washed, dispersed and centrifuged. Powders and condensates of quartz nanoparticles were analyzed by X-ray diffraction, Raman scattering and scanning electron microscopy. The size of quartz nanoparticles in aqueous dispersion was estimated from dynamic light scattering data. Main results. According to X-ray diffraction analysis, quartz of shungite rocks is classified as a low-temperature a-quartz of tetragonal structure (spatial group P41212) and has a crystallite size (less than 100 nm). The parameters of the crystal lattice and the coherent scattering region of the vein a-quartz of shungite rocks were determined after various treatments of the samples under study (dispersion, water treatment, ultrasound). Quartz nanoparticles are isolated and stabilized in aqueous dispersion. The average size of quartz nanoparticles in aqueous dispersion according to dynamic light scattering data is 158.7 ± 89.8 nm. This coincides with the particle size in the dispersion condensate films obtained by scanning electron microscopy. Comparison of nanoscale quartz of shungite rocks with samples of traditional quartz raw materials by Raman scattering showed that its distinctive feature is the presence of graphene-like carbon and water phases in the samples. Practical significance. The shungite quartz nanoparticles obtained and studied in the work, are a new unconventional source of quartz raw materials. It will find application in nanotechnology materials science for optics, electronics, composite materials production and biomedicine.

Keywords:

vein quartz of shungite rocks, X-ray diffraction analysis, Raman spectroscopy, dynamic light scattering, scanning electron microscopy

Acknowledgements:

experimental studies of nanosized quartz were carried out within the framework of the state projects of the Karelian Scientific Center of the RAS FWME-0222-2019-0065 and FMEN-2022-0006 (G.AS.). The study of aqueous dispersions of quartz nanoparticles was carried out with the financial support of the Russian Foundation for Basic Research (20-53-04013) and UMNIK (№ 16796GU/2021)

OCIS codes: 040.7480, 160.4236, 160.6030, 170.5660, 170.5810, 310.6860, 310.6870, 350.4990

References:

1.    Дышекова А.Х., Кармоков А.М. Структурные изменения при полиморфных a-b фазовых переходах в кварце // Изв. Кабардино-Балкарского научного центра РАН. 2017. № 5. С. 9–13.

       Dyshekova A.H., Karmokov A.M. Structural changes in polymorphic a-b phase transitions in quartz [in Russian] // Izvestiya Kabardino-Balkarian Scientific Center of the RAS. 2017. № 5. P. 9–13.

2.   Wright A.C. Defect-free vitreous networks: The idealised structure of SiO2 and related glasses // Defects in SiO2 and related dielectrics: Science and technology / NATO Science Series. 2000. V. 2. P. 1–35. https://doi.org/10.1007/978-94-010-0944-7_1

3.   Vlasova K.V., Konovalov A.N., Makarov A.I., et al. Synthetic crystalline quartz as an optical material for power optics // Radiophys. and Quantum Electron. 2019. V. 62. № 6. P. 439–446. https://doi.org/10.1007/s11141-019-09989-4

4.   Sampaolo A., Menduni G., Patimisco P., et al. Quartz-enhanced photoacoustic spectroscopy for hydrocarbon trace gas detection and petroleum exploration // Fuel. 2020. V. 277. Р. 118118. http://doi.org/10.1016/j.fuel.2020.118118

5.   Mao N., Tang Y., Jin M., et al. Nonlinear wavefront engineering with metasurface decorated quartz crystal // Nanophotonics. 2022. V. 11. № 4. P. 797–803. https://doi.org/10.1515/nanoph-2021-0464

6.   Naftaly M., Gregory A. Terahertz and microwave optical properties of single-crystal quartz and vitreous silica and the behavior of the boson peak // Appl. Sci. 2021. V. 11. Р. 6733. https://doi.org/10.3390/app11156733

7.    Sergeev V.P., Ovchinnikov S.V., Kalashnikov M.P., et al. The optical and mechanical properties of quartz glass with nanocomposite coatings based on Al-Si-N and In-Sn-O // AIP Conf. Proc. 2022. https://doi.org/10.1063/5.0085024

8.   Xiang B., Zhang R., Luo Y., et al. 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling // Nano Energy. 2021. V. 81. https://doi.org/10.1016/j.nanoen.2020. 105600

9.   Peng H.-Y., Wei Y.-A., Hsu Y.-C., et al. Complex optical properties of polymeric composite materials mixed with quartz powder and investigated by THz time-domain spectroscopy // Opt. Mater. Exp. 2022. V. 12. № 1. P. 22–23. https://doi.org/10.1364/OME.442626

10. Xie A., Wu Y., Liu Y., et al. Robust antifouling NH2-MIL-88B coated quartz fibrous membrane for efficient gravity-driven oil-water emulsion separation // J. Membrane Sci. 2022. V. 644. https://doi.org/10.1016/j.memsci.2021.120093

11.  Patimisco P., Scamarcio G., Tittel F.K., et al. Quartz-enhanced photoacoustic spectroscopy: A review // Sensors. 2014. V. 14. № 4. P. 6165–6206. https://doi.org/10.3390/s140406165

12.  Sgobba F., Sampaolo A., Patimisco P., et al. Compact and portable quartz-enhanced photoacoustic spectroscopy sensor for carbon monoxide environmental monitoring in urban areas // Photoacoustics. 2022. V. 25. № 10. https://doi.org/10.1016/j.pacs.2021.100318.

13.  Bertone J.F., Cizeron J., Wahi R.K., et al. Hydrothermal synthesis of quartz nanocrystals // Nano Lett. 2003. V. 3. № 5. P. 655–659. https://doi.org/10.1021/NL025854R

14.  Zhu Y., Yanagisawa K., Onda A., et al. The preparation of nano-crystallized cristobalite under hydrothermal conditions // J. Mater. Sci. 2005. V. 4. P. 3829–3831. https://doi.org/10.1007/s10853-005-2551-1

15.  Feng P., Jia J., Peng S., et al. Transcrystalline growth of PLLA on carbon fiber grafted with nano-SiO2 towards boosting interfacial bonding in bone scaffold // Biomat. Res. 2022. V. 26. https://doi.org/10.1186/s40824-021-00248-0

16.  Каманина Н.В., Лихоманова С.В., Рожкова Н.Н. Поляризационные плёнки для видимого диапазона спектра с наноструктурированной поверхностью на основе наночастиц кварца // Патент РФ № 2697413. Бюл. 2019. № 23.

       Kamanina N.V., Likhomanova S.V., Rozhkova N.N. Polarizing films for the visible range of the spectrum with a nanostructured surface based on quartz nanoparticles // RF Patent № 2697413. Bull. 2019. № 23.

17.  Рожкова Н.Н., Ригаева Ю.Л., Рожков С.С., et al. Наноразмерный кварц и способ его получения // Патент РФ № 2778691. Бюл. 2022. № 24.

       Rozhkova N.N., Rogacheva Yu.L., Rozhkov S.S., et al. Nanoscale quartz and its production method // RF Patent № 2778691. Bull. 2022. № 24.

18. Rozhkov S.P., Goryunov A.S., Kolodey V.A., et al. The role of water hydrogen bonds in the formation of associates and condensates in dispersions of serum albumin with shungite carbon and quartz nanoparticles // Coatings. 2023. V. 13. № 2. P. 471. https://doi.org/10.3390/coatings13020471

19.  Мустафакулов А.А., Ахмаджонова У.Т., Жураев Н.М. и др. Свойства синтетических кристаллов кварца // Физико-техническое образование. 2021. Т. 3. № 3. С. 9–16.

       Mustafakulov A.A., Akhmadzhonova U.T., Zhuraev N.M., et al. Properties of synthetic quartz crystals [in Russian] // Physico-technical Education. 2021. V. 3. № 3. P. 9–16.

20. Фирсова С.О., Шатский Г.В. Брекчии в шунгитовых породах Карелии и особенности их генезиса // ДАН СССР. 1988. Т. 302. С. 177–180.

       Firsova S.O., Shatsky G.V. Breccias in shungite rocks of Karelia and features of their genesis [in Russian] // Reports of the Academy of Sciences of the USSR. 1988. V. 302. P. 177–180.

21.  Купряков С.В. Геология и генезис шунгитовых пород Зажогинского месторождения // Органическое вещество шунгитоносных пород Карелии (генезис, эволюция, методы изучения) / Под ред. Филиппова М.М., Голубева А.И., Медведева П.В. Петрозаводск: Карельский научный центр РАН, 1994. С. 93–98.

       Kupryakov S.V. Geology and genesis of shungite rocks of the Zazhoginsky deposit // Organic matter of shungite-bearing rocks of Karelia (genesis, evolution, methods of study) / ed. by Filippov M.M., Golubev A.I., Medvedev P.V. Petrozavodsk: Karelian Scientific Center of the Russian Academy of Sciences, 1994. P. 93–98.

22. Рычанчик Д.В., Ромашкин А.Е. Особенности внутреннего строения Максовской залежи шунгитовых пород // Углеродсодержащие формации в геологической истории / Тр. Междунар. симп. Петрозаводск, 2000. С. 73–80.

       Rychanchik D.V., Romashkin A.E. Features of the internal structure of the Maksovskaya deposit of shungite rocks [in Russian] // Carbonaceous Formations in Geological History / Proc. Internat. Symp. Petrozavodsk, 2000. P. 73–80.

23. Садовничий Р.В., Рожкова Н.Н. Минеральные ассоциации высокоуглеродистых шунгитовых пород Максовской залежи (Онежская структура) // Тр. Карельского НЦ РАН. Сер. Геология докембрия. 2014. № 1. С. 148–158.

       Sadovnichy R.V., Rozhkova N.N. Mineral associations of high-carbon shungite rocks of the Maksovskaya deposit (Onega structure) [in Russian] // Proc. Karelian Scientific Center of the RAS. Precambrian Geology Series. 2014. № 1. P. 148–158.

24. Садовничий Р.В. Минералого-технологические особенности шунгитовых пород максовского месторождения (зажогинское рудное поле) // Дисс. канд. геол.-минерал. наук. Петрозаводск: Институт геологии Карельского НЦ РАН, 2016. 145 с.

       Sadovnichy R.V. Mineralogical and technological features of shungite rocks of the Maksovsky deposit (zazhoginskoye ore field) [in Russian] // PhD (Geology, Mineralogy) thesis. Petrozavodsk: Institute of Geology of the Karelian Scientific Center of the RAS. 2016. 145 p.

25. Садовничий Р.В., Михайлина А.А., Рожкова Н.Н. и др. Морфологические и структурные особенности кварца шунгитовых пород Максовской залежи // Тр. КарНЦ РАН. Геология докембрия. 2016. Т. 73. № 2. С. 73–88. https://doi.org/10.17076/geo126

       Sadovnichy R.V., Mikhailina A.A., Rozhkova N.N., et al. Morphological and structural features of quartz of shungite rocks of the Maksovskaya deposit [in Russian] // Proc. KarSC RAS. Precambrian Geology. 2016. V. 73. № 2. P. 73–88. https://doi.org/10.17076/geo126

26. Кузнецов С.К., Лютоев В.П., Шанина С.Н. и др. Особенности качества жильного кварца уральских месторождений // Изв. Коми НЦ УрО РАН. 2011. Т. 4. № 4. С. 65–72.

       Kuznetsov S.K., Lyutoev V.P., Shanina S.N., et al. Quality features of vein quartz of Ural deposits [in Russian] // Proc. Komi Scientific Center of the Ural Branch of the RAS. 2011. V. 4. № 4. P. 65–72.

27. Костылев Ю.С. Наименования объектов хрусталеносных месторождений Приполярного и Южного Урала в сопоставительном аспекте // Вопросы ономастики. 2021. Т. 18. № 3. С. 225–237. https://doi.org/10.15826/vopr_onom.2021.18.3.041

       Kostylev Yu. S. Names of objects of crystal-bearing deposits of the Circumpolar and Southern Urals in a comparative aspect [in Russian] // Questions of Onomastics. 2021. V. 18. № 3. P. 225–237. https://doi.org/10.15826/vopr_onom.2021.18.3.041

28. Котова Е.Н. Радиоспектроскопия жильного кварца и горного хрусталя Приполярного Урала // Вест. Института геологии Коми НЦ УрО РАН. 2006. № 1. С. 9–12.

       Kotova E.N. Radio spectroscopy of vein quartz and rock crystal of the Circumpolar Urals [in Russian] // Bulletin of the Institute of Geology of the Komi Scientific Center of the Ural Branch of the RAS. 2006. № 1. P. 9–12.

29. Алешина Л.А., Шиврин О.Н. Рентгенография кристаллов. Петрозаводск: ПетрГУ, 2004. 320 с.

       Alyoshina L.A., Shivrin O.N. X-ray crystals [in Russian]. Petrozavodsk: PetrSU Publ., 2004. 320 p.

30. Klug H.P., Alexander H.P. X-ray diffraction procedures, for poly crystalline and amorphous materials. N.Y.: John Wiley & Sons, 1954. 746 p.

31.  Nikitin A.N., Markova G.V., Balagurov A.M., et al. Investigation of the structure and properties of quartz in the a-b transition range by neutron diffraction and mechanical spectroscopy // Crystallogr. Reports. 2007. V. 52. P. 428–435. https://doi.org/10.1134/S1063774507030145

32. Rigaeva Y.L., Rozhkova N.N., Kovalchuk A.А., et al. X-ray studies of vein quartz from shungite rocks // Key Eng. Mat. 2020. V. 854. P. 200–206. https://doi.org/10.4028/www.scientific.net/KEM.854.2000

33.      Characterizing Carbon Nanomaterials with a Raman Analyzer. B&W Tek. AZoM [Электронный ресурс]. Режим доступа:  https://www.azom.com/article.aspx?ArticleID=14826, свободный яз. англ. (дата обращения 14.02.2023).