ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-01-66-79

УДК: 771.351.76

Afocal corrector for expanding the operating spectral and temperature ranges of an infrared system: Design methodology and achieved optical performance

For Russian citation (Opticheskii Zhurnal):

Грейсух Г.И., Левин И.А., Казин С.В. Афокальный корректор для расширения рабочих спектрального и температурного диапазонов инфракрасной системы: расчет и достигнутые характеристики // Оптический журнал. 2024. Т. 91. № 1. С. 66–79. http://doi.org/10.17586/1023-5086-2024-91-01-66-79

 

Greisukh G.I., Levin I.A., Kazin S.V. Afocal corrector for expanding the operating spectral and temperature ranges of an infrared system: Design methodology and achieved optical performance [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 1. P. 66–79. http://doi.org/10.17586/1023-5086-2024-91-01-66-79

For citation (Journal of Optical Technology):

Grigory I. Greisukh, Il’ya A. Levin, and Sergey V. Kazin, "Afocal corrector for expanding the operating spectral and temperature ranges of an infrared system: design methodology and achieved optical performance," Journal of Optical Technology. 91(1), 40-47 (2024). https://doi.org/10.1364/JOT.91.000040

Abstract:

Subject of the study. An afocal (refractive or refractive-diffractive) corrector, the inclusion of which in the optical channel of a modernized thermal imaging device allows expanding its functionality. Purpose of the study. To present a design methodology for afocal corrector that expands the operating spectral and temperature ranges of a thermal imaging device while maintaining the optical scheme and mechanical structure of its objective. The effectiveness of the methodology is confirmed by the achieved optical performance. Research method. Theoretical analysis and mathematical modeling using the equations of geometric optics and the rigorous theory of diffraction. Main results. A methodology has been developed for obtaining the initial parameters of an afocal corrector, which, along with the elimination of thermal defocusing, allows expanding the working spectral range while maintaining the aplanatic nature of the optical channel. The effectiveness of the proposed methodology is demonstrated by the example of calculating an afocal corrector coupled with an objective originally designed to operate at a fixed temperature and only with long-wavelength (7–14 µm) infrared radiation. It is shown that in the operating temperature range from –40 to 60 °C the system "Afocal refractive-diffraction corrector — original objective" is capable of forming an image in a double spectral range, including medium- (3,4–5,2 µm) and long-wavelength (7,5–11,4 µm) infrared radiation, with a contrast exceeding the image contrast, formed by the original objective at a fixed temperature and only in the long wavelength range. It is also shown that if the expansion of the spectral range is not required, then an afocal corrector consisting of only two refractive lenses successfully copes with the task. Practical significance. The results of this paper open up the possibility of varying the versions of the thermal imaging device without changing the optical scheme of its objective and without making significant adjustments to the elements of the mechanical structure.

Keywords:

infrared objective, afocal corrector, passive optical athermalization, two-layer diffractive microstructure

Acknowledgements:

the research was supported by a grant from the Russian Science Foundation (project № 20-19-00081).

OCIS codes: 110.0110, 220.0220

References:

1.    Русинов М.М. Композиция оптических систем. Л.: «Машиностроение», 1989. 383 с.

       Rusinov M.M. Composition of optical systems. Leningrad: "Mashinostroenie" Publ., 1989. 383 p.

2.   Слюсарев Г.Г. Методы расчета оптических систем. Л.: «Машиностроение», 1969. 672 с.

       Slusarev G.G. Methods of calculating optical systems. Leningrad: "Mashinostroenie" Publ., 1969. 672 p.

3.   Михельсон Н.Н. Оптика астрономических телескопов и методы ее расчета. М.: «Физматлит», 1995. 333 с.

       Mikhelson N.N. Optics of astronomical telescopes and its calculation methods. Moscow: "Fizmatlit" Publ., 1995. 333 p.

4.   Андреев Л.Н., Дегтярева Г.С., Ежова В.В. Симметричные компенсаторы сферической аберрации // Оптический журнал. 2015. Т. 82. № 1. С. 28–31.

       Andreev L.N., Degtyareva G.S., Ezhova V.V. Symmetrical compensators of spherical aberration // Journal of Optical Technology. 2015. V. 82. Iss. 1. P. 21–23. https://doi.org/10.1364/JOT.82.000021

5.   Андреев Л.Н., Ежова В.В., Цыганок Е.А., Кожина А.Д. Компенсаторы кривизны поверхности изображения и астигматизма // Оптический журнал. 2021. Т. 88. № 4. С. 12–16. https://doi.org/10.17586/1023-5086-2021-88-04-12-16

       Andreev L.N., Ezhova V.V., Tsyganok E.A., Kozhina A.D. Compensators of Petzval field curvature and astigmatism // Journal of Optical Technology. 2021. V. 88. Iss. 4. P. 175–177. https://doi.org/10.1364/JOT.88.000175

6.   Иванов С.Е., Романова Г.Э. Использование двухкомпонентного афокального компенсатора в зеркально-линзовых системах для коррекции термоаберрации положения // Науч.-техн. вест. инф. технол., механики и оптики. 2017. Т. 17. № 3. С. 373–379. https://doi.org/10.17586/2226-1494-2017-17-3-373-379

       Ivanov S.E., Romanova G.E. Two-lens afocal compensator for thermal defocus correction of catadioptric system // Sci. Tech. J. Inf. Technol. Mech. Opt. 2017. V. 17. Iss. 3. P. 373–379. https://doi.org/10.17586/2226-1494-2017-17-3-373-379

7.    Laborde V., Loicq J., Hastanin J., Habraken S. Multilayer diffractive optical element material selection method based on transmission, total internal reflection, and thickness // Appl. Opt. 2022. V. 61. Iss. 25. P. 7415–7423. https://doi.org/10.1364/AO.465999

8.   Mao S., Zhao J., He D. Analytical and comprehensive optimization design for multilayer diffractive optical elements in infrared dual band // Opt. Commun. 2020. V. 472. Article 125831. https://doi.org/10.1016/j.optcom.2020.125831

9.   CRYSTRAN [Электронный ресурс]. Режим доступа: https://www.crystran.co.uk/optical-materials

       CRYSTRAN [Electronic resource]. Access mode: https://www.crystran.co.uk/optical-materials

10. ISP Optics [Электронный ресурс]. Режим доступа: https://ispoptics.com/technical/optical-materials

       ISP Optics [Electronic resource]. Access mode: https://ispoptics.com/technical/optical-materials

11.  Tydex [Электронный ресурс]. Режим доступа: https://www.tydexoptics.com/ru/materials/for_transmission_optics

       Tydex [Electronic resource]. Access mode: https://www.tydexoptics.com/ru/materials/for_transmission_optics

12.  CDGM HWS Family Infrared Chalcogenide Glass Data Sheet [Электронный ресурс]. Режим доступа: http://cdgmgd.com/downloadFile.htm?id=12691

       CDGM HWS Family Infrared Chalcogenide Glass Data Sheet [Electronic resource]. Access mode: http://cdgmgd.com/downloadFile.htm?id=12691

13.  Hilton A.R. Chalcogenide glasses for infrared optics. N.Y.: The McGraw-Hill Companies, Inc., 2010. 279 p. ISBN:978-0-07-159698-5

14.  NHG [Электронный ресурс]. Режим доступа: http://www.hbnhg.com/down/data/9494829706.pdf

       NHG [Electronic resource]. Access mode: http://www.hbnhg.com/down/data/9494829706.pdf

15.  SCHOTT [Электронный ресурс]. Режим доступа: https://www.schott.com/shop/advanced-optics/en/Samples-IRG-Chalcogenide/c/witness-samples-irg-chalcogenide

       SCHOTT [Electronic resource]. Access mode: https://www.schott.com/shop/advanced-optics/en/Samples-IRG-Chalcogenide/c/witness-samples-irg-chalcogenide

16.  VITRON [Электронный ресурс]. Режим доступа: https://www.vitron.de/en/ir-glasses/specifications.php

       VITRON [Electronic resource]. Access mode: https://www.vitron.de/en/ir-glasses/specifications.php

17.  Amorphous Materials Inc. [Электронный ресурс]. Режим доступа: https://www.amorphousmaterials.com/products

       Amorphous Materials Inc. [Electronic resource]. Access mode: https://www.amorphousmaterials.com/products

18. UMICORE [Электронный ресурс]. Режим доступа: https://eom.umicore.com/en/infrared-solutions/infrared-optics/introducing-gasir

       UMICORE [Electronic resource]. Access mode: https://eom.umicore.com/en/infrared-solutions/infrared-optics/introducing-gasir

19.  Государственный оптический институт [Электронный ресурс]. Режим доступа: http://goi.ru/production/glass/oxfree

       State Optical Institute [Electronic resource]. Access mode: http://goi.ru/production/glass/oxfree

20. Rahmlow Jr.T.D., Lazo-Wasem J.E., Vizgaitis J.N., Flanagan-Hyde J. Dual-band antireflection coatings on 3rd Gen lenses // Proc. SPIE. 2011. V. 8012. Р. 80123D (9 p). https://doi.org/10.1117/12.888100

21.  Greisukh G.I., Levin I.A., Ezhov E.G. Design of ultra-high-aperture dual-range athermal infrared objectives // Photonics. 2022. V. 9. Iss. 10. P. 742. https://doi.org/10.3390/photonics9100742

22. Левин И.А., Степанов С.А. Пассивная атермализация рефракционно-дифракционных пластмассово-линзовых объективов // Компьютерная оптика. 2017. Т. 41. № 5. С. 694–700. https://doi.org/10.18287/2412-6179-2017-41-5-694-700

       Levin I.A., Stepanov S.A. Passive athermalization of refractive-diffractive plastic lenses // Computer Optics. 2017. V. 41. Iss. 5. P. 694–700. https://doi.org/10.18287/2412-6179-2017-41-5-694-700

23. Медведев А.В., Гринкевич А.В., Князева С.Н. Атермализация объективов прицельно-наблюдательных комплексов как средство обеспечения жизнедеятельности объектов БТВТ // Фотоника. 2016. Т. 56. № 2. С. 94–109.

       Medvedev A.V., Grinkevich A.G., Knyazeva S.N. Athermalization of objectives of sighting and observation complexes as the means of functioning support of the facilities of Armament of Armored Force Vehicles (AAFV) // Photonics Russia. 2016. V. 56. Iss. 2. P. 94–109.

24. АСТРОН-64017-2. Микроболометрический матричный детектор. [Электронный ресурс]. URL: https://astrohn.ru/product/astrohn-64017-2/ (дата обращения 15.04.2023).

       АСТРОН-64017-2. Microbolometrer matrix detector [Electronic resource]. Access mode: https://astrohn.ru/product/astrohn-64017-2/ (Accessed 04/15/2023).

25. ZEMAX [Электронный ресурс]. Режим доступа: http://www.zemax.com/pages/opticstudio/

       ZEMAX [Electronic resource]. Access mode: http://www.zemax.com/pages/opticstudio/

26. Грейсух Г.И., Ежов Е.Г., Захаров О.А., Казин С.В. Влияние побочных дифракционных порядков на качество изображения, формируемого рефракционно-дифракционной оптической системой среднего ИК-диапазона // Опт. и спектр. 2021. Т. 129. № 4. С. 378–384. https://doi.org/10.21883/OS.2021.04.50763.273-20

            Greisukh G.I., Ezhov E.G., Zakharov O.A., Kazin S.V. Influence of secondary diffraction orders on the quality of image formed by a Mid-IR refractive-diffractive optical system // Opt. and Spectrosc. 2021. V. 129. Iss. 4. P. 482–488. https://doi.org/10.1134/S0030400X2104010X