DOI: 10.17586/1023-5086-2024-91-01-66-79
УДК: 771.351.76
Afocal corrector for expanding the operating spectral and temperature ranges of an infrared system: Design methodology and achieved optical performance
Full text on elibrary.ru
Publication in Journal of Optical Technology
Грейсух Г.И., Левин И.А., Казин С.В. Афокальный корректор для расширения рабочих спектрального и температурного диапазонов инфракрасной системы: расчет и достигнутые характеристики // Оптический журнал. 2024. Т. 91. № 1. С. 66–79. http://doi.org/10.17586/1023-5086-2024-91-01-66-79
Greisukh G.I., Levin I.A., Kazin S.V. Afocal corrector for expanding the operating spectral and temperature ranges of an infrared system: Design methodology and achieved optical performance [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 1. P. 66–79. http://doi.org/10.17586/1023-5086-2024-91-01-66-79
Grigory I. Greisukh, Il’ya A. Levin, and Sergey V. Kazin, "Afocal corrector for expanding the operating spectral and temperature ranges of an infrared system: design methodology and achieved optical performance," Journal of Optical Technology. 91(1), 40-47 (2024). https://doi.org/10.1364/JOT.91.000040
Subject of the study. An afocal (refractive or refractive-diffractive) corrector, the inclusion of which in the optical channel of a modernized thermal imaging device allows expanding its functionality. Purpose of the study. To present a design methodology for afocal corrector that expands the operating spectral and temperature ranges of a thermal imaging device while maintaining the optical scheme and mechanical structure of its objective. The effectiveness of the methodology is confirmed by the achieved optical performance. Research method. Theoretical analysis and mathematical modeling using the equations of geometric optics and the rigorous theory of diffraction. Main results. A methodology has been developed for obtaining the initial parameters of an afocal corrector, which, along with the elimination of thermal defocusing, allows expanding the working spectral range while maintaining the aplanatic nature of the optical channel. The effectiveness of the proposed methodology is demonstrated by the example of calculating an afocal corrector coupled with an objective originally designed to operate at a fixed temperature and only with long-wavelength (7–14 µm) infrared radiation. It is shown that in the operating temperature range from –40 to 60 °C the system "Afocal refractive-diffraction corrector — original objective" is capable of forming an image in a double spectral range, including medium- (3,4–5,2 µm) and long-wavelength (7,5–11,4 µm) infrared radiation, with a contrast exceeding the image contrast, formed by the original objective at a fixed temperature and only in the long wavelength range. It is also shown that if the expansion of the spectral range is not required, then an afocal corrector consisting of only two refractive lenses successfully copes with the task. Practical significance. The results of this paper open up the possibility of varying the versions of the thermal imaging device without changing the optical scheme of its objective and without making significant adjustments to the elements of the mechanical structure.
infrared objective, afocal corrector, passive optical athermalization, two-layer diffractive microstructure
Acknowledgements:the research was supported by a grant from the Russian Science Foundation (project № 20-19-00081).
OCIS codes: 110.0110, 220.0220
References:1. Русинов М.М. Композиция оптических систем. Л.: «Машиностроение», 1989. 383 с.
Rusinov M.M. Composition of optical systems. Leningrad: "Mashinostroenie" Publ., 1989. 383 p.
2. Слюсарев Г.Г. Методы расчета оптических систем. Л.: «Машиностроение», 1969. 672 с.
Slusarev G.G. Methods of calculating optical systems. Leningrad: "Mashinostroenie" Publ., 1969. 672 p.
3. Михельсон Н.Н. Оптика астрономических телескопов и методы ее расчета. М.: «Физматлит», 1995. 333 с.
Mikhelson N.N. Optics of astronomical telescopes and its calculation methods. Moscow: "Fizmatlit" Publ., 1995. 333 p.
4. Андреев Л.Н., Дегтярева Г.С., Ежова В.В. Симметричные компенсаторы сферической аберрации // Оптический журнал. 2015. Т. 82. № 1. С. 28–31.
Andreev L.N., Degtyareva G.S., Ezhova V.V. Symmetrical compensators of spherical aberration // Journal of Optical Technology. 2015. V. 82. Iss. 1. P. 21–23. https://doi.org/10.1364/JOT.82.000021
5. Андреев Л.Н., Ежова В.В., Цыганок Е.А., Кожина А.Д. Компенсаторы кривизны поверхности изображения и астигматизма // Оптический журнал. 2021. Т. 88. № 4. С. 12–16. https://doi.org/10.17586/1023-5086-2021-88-04-12-16
Andreev L.N., Ezhova V.V., Tsyganok E.A., Kozhina A.D. Compensators of Petzval field curvature and astigmatism // Journal of Optical Technology. 2021. V. 88. Iss. 4. P. 175–177. https://doi.org/10.1364/JOT.88.000175
6. Иванов С.Е., Романова Г.Э. Использование двухкомпонентного афокального компенсатора в зеркально-линзовых системах для коррекции термоаберрации положения // Науч.-техн. вест. инф. технол., механики и оптики. 2017. Т. 17. № 3. С. 373–379. https://doi.org/10.17586/2226-1494-2017-17-3-373-379
Ivanov S.E., Romanova G.E. Two-lens afocal compensator for thermal defocus correction of catadioptric system // Sci. Tech. J. Inf. Technol. Mech. Opt. 2017. V. 17. Iss. 3. P. 373–379. https://doi.org/10.17586/2226-1494-2017-17-3-373-379
7. Laborde V., Loicq J., Hastanin J., Habraken S. Multilayer diffractive optical element material selection method based on transmission, total internal reflection, and thickness // Appl. Opt. 2022. V. 61. Iss. 25. P. 7415–7423. https://doi.org/10.1364/AO.465999
8. Mao S., Zhao J., He D. Analytical and comprehensive optimization design for multilayer diffractive optical elements in infrared dual band // Opt. Commun. 2020. V. 472. Article 125831. https://doi.org/10.1016/j.optcom.2020.125831
9. CRYSTRAN [Электронный ресурс]. Режим доступа: https://www.crystran.co.uk/optical-materials
CRYSTRAN [Electronic resource]. Access mode: https://www.crystran.co.uk/optical-materials
10. ISP Optics [Электронный ресурс]. Режим доступа: https://ispoptics.com/technical/optical-materials
ISP Optics [Electronic resource]. Access mode: https://ispoptics.com/technical/optical-materials
11. Tydex [Электронный ресурс]. Режим доступа: https://www.tydexoptics.com/ru/materials/for_transmission_optics
Tydex [Electronic resource]. Access mode: https://www.tydexoptics.com/ru/materials/for_transmission_optics
12. CDGM HWS Family Infrared Chalcogenide Glass Data Sheet [Электронный ресурс]. Режим доступа: http://cdgmgd.com/downloadFile.htm?id=12691
CDGM HWS Family Infrared Chalcogenide Glass Data Sheet [Electronic resource]. Access mode: http://cdgmgd.com/downloadFile.htm?id=12691
13. Hilton A.R. Chalcogenide glasses for infrared optics. N.Y.: The McGraw-Hill Companies, Inc., 2010. 279 p. ISBN:978-0-07-159698-5
14. NHG [Электронный ресурс]. Режим доступа: http://www.hbnhg.com/down/data/9494829706.pdf
NHG [Electronic resource]. Access mode: http://www.hbnhg.com/down/data/9494829706.pdf
15. SCHOTT [Электронный ресурс]. Режим доступа: https://www.schott.com/shop/advanced-optics/en/Samples-IRG-Chalcogenide/c/witness-samples-irg-chalcogenide
SCHOTT [Electronic resource]. Access mode: https://www.schott.com/shop/advanced-optics/en/Samples-IRG-Chalcogenide/c/witness-samples-irg-chalcogenide
16. VITRON [Электронный ресурс]. Режим доступа: https://www.vitron.de/en/ir-glasses/specifications.php
VITRON [Electronic resource]. Access mode: https://www.vitron.de/en/ir-glasses/specifications.php
17. Amorphous Materials Inc. [Электронный ресурс]. Режим доступа: https://www.amorphousmaterials.com/products
Amorphous Materials Inc. [Electronic resource]. Access mode: https://www.amorphousmaterials.com/products
18. UMICORE [Электронный ресурс]. Режим доступа: https://eom.umicore.com/en/infrared-solutions/infrared-optics/introducing-gasir
UMICORE [Electronic resource]. Access mode: https://eom.umicore.com/en/infrared-solutions/infrared-optics/introducing-gasir
19. Государственный оптический институт [Электронный ресурс]. Режим доступа: http://goi.ru/production/glass/oxfree
State Optical Institute [Electronic resource]. Access mode: http://goi.ru/production/glass/oxfree
20. Rahmlow Jr.T.D., Lazo-Wasem J.E., Vizgaitis J.N., Flanagan-Hyde J. Dual-band antireflection coatings on 3rd Gen lenses // Proc. SPIE. 2011. V. 8012. Р. 80123D (9 p). https://doi.org/10.1117/12.888100
21. Greisukh G.I., Levin I.A., Ezhov E.G. Design of ultra-high-aperture dual-range athermal infrared objectives // Photonics. 2022. V. 9. Iss. 10. P. 742. https://doi.org/10.3390/photonics9100742
22. Левин И.А., Степанов С.А. Пассивная атермализация рефракционно-дифракционных пластмассово-линзовых объективов // Компьютерная оптика. 2017. Т. 41. № 5. С. 694–700. https://doi.org/10.18287/2412-6179-2017-41-5-694-700
Levin I.A., Stepanov S.A. Passive athermalization of refractive-diffractive plastic lenses // Computer Optics. 2017. V. 41. Iss. 5. P. 694–700. https://doi.org/10.18287/2412-6179-2017-41-5-694-700
23. Медведев А.В., Гринкевич А.В., Князева С.Н. Атермализация объективов прицельно-наблюдательных комплексов как средство обеспечения жизнедеятельности объектов БТВТ // Фотоника. 2016. Т. 56. № 2. С. 94–109.
Medvedev A.V., Grinkevich A.G., Knyazeva S.N. Athermalization of objectives of sighting and observation complexes as the means of functioning support of the facilities of Armament of Armored Force Vehicles (AAFV) // Photonics Russia. 2016. V. 56. Iss. 2. P. 94–109.
24. АСТРОН-64017-2. Микроболометрический матричный детектор. [Электронный ресурс]. URL: https://astrohn.ru/product/astrohn-64017-2/ (дата обращения 15.04.2023).
АСТРОН-64017-2. Microbolometrer matrix detector [Electronic resource]. Access mode: https://astrohn.ru/product/astrohn-64017-2/ (Accessed 04/15/2023).
25. ZEMAX [Электронный ресурс]. Режим доступа: http://www.zemax.com/pages/opticstudio/
ZEMAX [Electronic resource]. Access mode: http://www.zemax.com/pages/opticstudio/
26. Грейсух Г.И., Ежов Е.Г., Захаров О.А., Казин С.В. Влияние побочных дифракционных порядков на качество изображения, формируемого рефракционно-дифракционной оптической системой среднего ИК-диапазона // Опт. и спектр. 2021. Т. 129. № 4. С. 378–384. https://doi.org/10.21883/OS.2021.04.50763.273-20
Greisukh G.I., Ezhov E.G., Zakharov O.A., Kazin S.V. Influence of secondary diffraction orders on the quality of image formed by a Mid-IR refractive-diffractive optical system // Opt. and Spectrosc. 2021. V. 129. Iss. 4. P. 482–488. https://doi.org/10.1134/S0030400X2104010X