DOI: 10.17586/1023-5086-2024-91-10-60-67
УДК: 546.3-126:544.2
Study of the morphology and surface composition of a nanostructured tin film on porous silicon
Full text on elibrary.ru
Ким К.Б., Леньшин А.С., Черненко С.С., Нифталиев С.И., Чукавин А.И. Исследование морфологии и состава поверхности наноструктурированной плёнки олова на пористом кремнии // Оптический журнал. 2024. Т. 91. № 10. С. 60–67. http://doi.org/10.17586/1023-5086-2024-91-10-60-67
Kim K.B., Lenshin A.S., Chernenko S.S., Niftaliev S.I., Chukavin A.I. Study of the mor phology and surface composition of a nanostructured tin film on porous silicon [in Russian] // Opticheskii Zhurnal. 2024. Т. 91. № 10. P. 60–67. http://doi.org/10.17586/1023-5086-2024-91-10-60-67
Study subject. Porous silicon is a material with great potential for creating optoelectronic and sensor devices that can enhance various technologies and improve their efficiency. It finds applications in lightemitting diodes, photodetectors, solar cells, sensors, and other devices that require high light absorption and emission efficiency, as well as sensitivity to the optical values of the environment. The deposition of tin particles on porous silicon has potential for developing new nanocomposite materials with customised properties for various applications. Vacuum-thermal evaporation is a commonly used method for depositing oxide films. This method produces high-quality thin layers with good reproducibility and controllable properties. Purpose of the work. The aim of this study was to investigate the impact of thermally deposited tin on the structure and composition of porous silicon. Method. Porous silicon was created by anodizing monocrystalline silicon plates (KEF (silicon electronic phosphorus) grade with orientation 100). The original and tin-anodized samples were analyzed using atomic force microscopy, photoluminescence, and X-ray photoelectron spectroscopy to determine their shape, composition, and characteristics. Main results. The following section presents the main findings. According to the results, tin was deposited on the surface of the porous layer as an island film through vacuum-thermal evaporation. This deposition inhibited the oxidation of the porous layer. The nanocomposites of porous silicon with deposited tin consist of tin dioxide, tin suboxide/monoxide, and metallic tin. The application of the vacuum-thermal method to obtain tin films on porous silicon alters the shape and position of the photoluminescence spectrum band and partially increases its intensity. Practical significance. This technique can be used to produce composite materials with improved characteristics.
porous silicon, tin, vacuum-thermal evaporation, X-ray photoelectron spectroscopy, photoluminescence
Acknowledgements:the work was supported by the Russian Science Foundation, RSF project № 22-73-00154
OCIS codes: 040.0040, 160.1890, 240.0310
References:1. Sazzad H.A., Prattusha Bhattacharjee, Sarower Kabir et al. Review of new developments in different types of sensors over the past 15 years // Reference Module in Materials Science and Materials Engineering. Elsevier Science BV. January 2023. https://doi.org/10.1016/ B978-0-323-96020-5.00043-1
2. Леньшин А.С., Ким К.Б., Агапов Б.Л., Кашкаров В.М., Лукин А.Н., Нифталиев С.И. Строение и состав композита пористого кремния с осажденной медью // Конденсированные среды и межфазные границы. 2023. Т. 25. № 3. С. 359–366. https://doi.org/10.17308/ kcmf.2023.25/11259
Lenshin A.S., Kim K.B., Agapov B.L., Kashkarov V.M., Lukin A.N., Niftaliyev S.I. Structure and composition of a composite of porous silicon with deposited copper // Condensed Matter and Interphases. 2023. V. 25. T. 2. P. 359–366. https://doi.org/10.17308/ kcmf.2023.25/11259
3. Григорьев Л.В., Михайлов А.В. Оптические и фотолюминесцентные свойства пористого кремния, легированного иттербием при лазерно-стимулированном окислении // Оптический журнал. 2016. Т. 83. № 12. С. 98–106.
Grigor’ev L.V., Mikhaĭlov A.V. Optical and photoluminescence properties of ytterbium-doped porous silicon subjected to laser-stimulated oxidation // Journal of Optical Technology. 2016. V. 83. № 12. P. 787–793. https://doi.org/10.1364/JOT.83.000787
4. Grevtsov N., Chubenko E., Bondarenko V., Gavrilin I., Dronov A., Gavrilov S. Electrochemical deposition of indium into oxidized and unoxidized porous silicon // Thin Solid Films. 2021. V. 734. P. 138860. https://doi.org/ 10.1016/j.tsf.2021.138860
5. Alwan A.M., Yousif A.A., Abed H.R. High sensitivity and fast response at the room temperature of SnO2:CuO/PSi nanostructures sandwich configuration NH3 gas sensor // AIP Conference Proceedings. 2019. V. 2190. P. 20086. https://doi.org/10.1063/1.5138572
6. Pinto A.H., Nogueira A.E., Dalmaschio C.J., Frigini I.N., Almeida J. C., Ferrer M.M., Berengue O.M., Gonçalves R. A., Mendonça V. R. Doped tin dioxide (d-SnO2) and its nanostructures: Review of the theoretical aspects, photocatalytic and biomedical applications // Solids. 2022. V. 3. P. 327–360. https://doi. org/10.3390/solids3020024
7. Рябцев С.В. Электрофизические и оптические свойства различных наноформ оксида олова // Дисс. док. физ.-мат. наук. Воронеж: Воронежский государственный университет, 2011. 274 с.
Ryabtsev S.V. Electrophysical and optical properties of various nanoforms of tin oxide [in Russian] // PhD thesis in Physics and Mathematics. Voronezh: Voronezh State University, 2011. 274 p.
8. Nasir E.M., Naji I.S. Structural and optical properties of PbxCd1–xS thin films prepared by vacuum evaporation technique // Aust. J. Basic & Appl. Sci. 2015. V. 9. № 20. P. 364–371.
9. Abegunde O.O., Akinlabi E.T., Oladijo O.P., Akinlabi S., Ude A.U. Overview of thin film deposition techniques // AIMS Materials Science. 2019. V. 6. T. 2. P. 174–199. https://doi.org/10.3934/matersci.2019.2.174
10. Lenshin A.S., Seredin P.V., Kashkarov V.M., Minakov D.A. Origins of photoluminescence degradation in porous silicon under irradiation and the way of its elimination // Materials Science in Semiconductor Processing. 2017. V. 64. T. 71. https://doi.org/10.1016/j. mssp.2017.03.020
11. Lenshin A.S., Kashkarov V.M., Domashevskaya E.P., Bel’tyukov A.N., Gil’mutdinov F.Z. Investigations of the composition of macro-, micro- and nanoporous silicon surface by ultrasoft X-ray spectroscopy and X-ray photoelectron spectroscopy // Applied Surface Science. 2015. V. 359. P. 550–559. https://doi.org/10.1016/ j.apsusc.2015.10.140
12. Леньшин А.С., Кашкаров В.М., Турищев С.Ю., Смирнов М.С., Домашевская Э.П. Влияние естественного старения на фотолюминесценцию пористого кремния // Журнал технической физики. 2012. Т. 82. № 2. С. 150–152.
Lenshin A.S., Kashkarov V.M., Turishchev S.Yu., Smirnov M.S., Domashevskaya E.P. The influence of natural aging on the photoluminescence of porous silicon // Journal of Technical Physics. 2012. T. 82. № 2. P. 150–152.
13. Терехов В.А., Теруков Е.И., Ундалов Ю.К., Паринова Е.В., Спирин Д.Е., Середин П.В., Минаков Д.А., Домашевская Э.П. Состав и оптические свойства аморфных пленкa-SiOx:H с нанокластерами кремния // Физика и техника полупроводников. 2016. Т. 50. № 2. С. 212–217.
Terekhov V.A., Terukov E.I., Undalov Yu.K., Parinova E.V., Spirin D.E., Seredin P.V., Minakov D.A., Domashevskaya E.P. Composition and optical properties of amorphous SiOx:H films with silicon nanoclusters // Physics and technology of semiconductors. 2016. V. 50. № 2. P. 212–217.
14. Turishchev S., Lenshin A., Domashevskaya E., Kashkarov V., Terekhov V., Pankov K., Khoviv D. Evolution of nanoporous silicon phase composition and electron energy structure under natural ageing // Phys. Status Solidi. 2009. V. 6. P. 1651–1655. https://doi.org/10.1002/pssc.200881015