ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-02-112-121

УДК: 544.537

Second harmonic generation with activation effect in a flexible membrane with silicon nanowires

For Russian citation (Opticheskii Zhurnal):

Масталиева В.А, Неплох В.В., Айбуш А.В., Фёдоров В.В., Якубова А.А., Коваль О.Ю., Гудовских А.С., Макаров С.В., Мухин И.С. Генерация второй гармоники c эффектом активации в гибкой мембране с кремниевыми нитевидными нанокристаллами // Оптический журнал. 2024. Т. 91. № 2. С. 112–121.

http://doi.org/10.17586/1023-5086-2024-91-02-112-121

 

Mastalieva V.A., Neplokh V.V., Aybush V.A., Fedorov V.V., Yakubova A.A., Koval O.Y., Gudovskikh A.S., Makarov S.V., Mukhin I.S. Second harmonic generation with activation effect in a flexible membrane with silicon nanowires [In Russian] // Opticheskii Zhurnal. 2024. V. 91. № 2. P. 112–121. http://doi.org/10.17586/1023-5086-2024-91-02-112-121

For citation (Journal of Optical Technology):

Viktoriia A. Mastalieva, Vladimir V. Neplokh, V. Arseniy Aybush, Vladimir V. Fedorov, Anastasiya A. Yakubova, Olga Y. Koval, Alexander S. Gudovskikh, Sergey V. Makarov, and Ivan S. Mukhin, "Second harmonic generation with the activation effect in a flexible membrane with silicon nanowires," Journal of Optical Technology. 91(2), 125-130 (2024). https://doi.org/10.1364/JOT.91.000125

Abstract:

The subject of study is nonlinear optical properties of arrays of silicon nanowires formed by etching in inductively coupled plasma using a microsphere mask with a diameter of 80 nanometers and height of 1.3 micrometers, encapsulated in polydimethylsiloxane. The aims of study are: the development of a converter of IR radiation into the visible range based on flexible polymer membranes of large area encapsulating arrays of silicon nanowires; the diagnostics of nonlinear optical properties of arrays of silicon nanowires, the determination of the conversion mechanism of incident IR radiation into the optical harmonics of higher orders of the visible spectral range, the estimation of the second harmonic generation efficiency. Method. Excitation of the second harmonic generation in the extended visible spectral range using a parametric amplifier for precise selection of excitation wavelength in a wide spectral range allows us to study nonlinear effects of different orders and to work near the electric and magnetic resonances of nanocrystals. Nonlinear optical studies of membranes of silicon nanowires in polymer were carried out using a laser scanning microscope. Femtosecond laser pulses were applied through the external port of the microscope acousto-optic modulator. Main results. The study of the infrared-to-visible range converters based on silicon nanowires is motivated by the works on second harmonic generation on the silicon surface and in bulk silicon under the external displacement. The proposed methods differ from those considered in this paper in both materials and diagnostic methods: the properties of planar resonators fabricated by standard methods of the thin film processing and patterning were studied earlier, while the second harmonic generation occurs mainly in bulk silicon, in which the necessary parameter c(2) arises when the external electric field or mechanical voltage is applied. It is worth noting that the spectral region of the second harmonic signal lies within the range of the optical fiber transparency window, and the characterization is performed in a unique experimental setup with tunable wavelength. Thus, this work demonstrates the enhanced second harmonic generation in structures fundamentally new in the method of obtaining and analyzing nonlinear effects of silicon nanowires membranes in polymer. In the experiment the effect of irradiation with femtosecond laser pulses leading to a significant and irreversible increase of the second harmonic generation signal was found, which is related to the restructuring of the surface material and electro-induced second harmonic due to charging of electron traps in the near-surface layer of the crystal. Practical significance. The obtained results represent new approaches to the design and manufacture of converters of infrared range into visible light. The developed membranes of silicon nanowires in polymer are necessary for creation of silicon-integrated light converters, including visualizers of the infrared radiation.

Keywords:

silicon nanowires, nonlinear optics, nanophotonics, infrared radiation, second harmonic, silicon, flexible devices

Acknowledgements:

this work was supported by the Russian Science Foundation, Project № 23-79-00018

OCIS codes: 190.0190, 300.0300

References:

1.    Han S.T., Peng H., Sun Q., Venkatesh S., Chung K.S., Lau S.C., Roy V.A.L. An overview of the development of flexible sensors // Advanced materials. 2017. V. 29(33). P. 1700375. https://doi.org/10.1002/adma.201700375

2.   Fedorov V.V., Bolshakov A., Sergaeva O., Neplokh V., Markina D., Bruyere S., Mukhin I.S. Gallium phosphide nanowires in a free-standing, flexible, and semitransparent membrane for large-scale infrared-to-visible light conversion // ACS nano. 2020. V. 14(8). P. 10624–10632. https://doi.org/10.1021/acsnano.0c04872

3.   Hoeh M.A., Neu J., Schmitt K., Rahm M. Optical tuning of ultra-thin, silicon-based flexible metamaterial membranes in the terahertz regime // Optical Materials Express. 2015. V. 5(2). P. 408–415. https://doi.org/ 10.1364/OME.5.000408

4.   Bhowmik G., An Y.Q., Schujman S., Diebold A.C., Huang M. Optical second harmonic generation from silicon (100) crystals with process tailored surface and embedded silver nanostructures for silicon nonlinear nanophotonics // Journal of Applied Physics. 2020. V. 128(16). P. 165106. https://doi.org/10.1063/5.0012529

5.   Vyacheslavova E.A., Morozov I.A., Kudryashov D.A., Uvarov A.V., Baranov A.I., Maksimova A.A., Gudovskikh A.S. Study of cryogenic unmasked etching of “Black Silicon” with Ar gas additives // ACS omega. 2022. V. 7(7). P. 6053–6057. https://doi.org/10.1021/acsomega.1c06435

6.   Schriever C., Bianco F., Cazzanelli M., Ghulinyan M., Eisenschmidt C., de Boor J., Schilling J. Second order optical nonlinearity in silicon waveguides: Inhomogeneous stress and interfaces // Advanced Optical Materials. 2014. V. 3(1). P. 129–136. https://doi.org/10.1002/adom.201400370

7.    Borghi M., Castellan C., Signorini S., Trenti A., Pavesi L. Nonlinear silicon photonics // J. Opt. 2017. V. 19. P. 093002. https://doi.org/10.1088/2040-8986/aa7a6d

8.   Makarov S.V., Petrov M.I., Zywietz U., Milichko V., Zuev D., Lopanitsyna N., Kivshar Y.S. Efficient second-harmonic generation in nanocrystalline silicon nanoparticles // Nano letters. 2017. V. 17(5). P. 3047–3053. https://doi.org/10.1021/acs.nanolett.7b00392

9.   Cazzanelli M., Bianco F., Borga E., Pucker G., Ghulinyan M., Degoli E., Pavesi L. Second-harmonic generation in silicon waveguides strained by silicon nitride // Nature materials. 2012. V. 11(2). P. 148–154. https://doi.org/10.1038/nmat3200

10. Borghi M., Bazzanella D., Mancinelli M., Pavesi L. On the modeling of thermal and free carrier nonlinearities in silicon-on-insulator microring resonators // Optics Express. 2021. V. 29(3) P. 4363–4377. https://doi.org/10.1364/OE.413572

11.  Borghi M., Biasi S., Pavesi L. Reservoir computing based on a silicon microring and time multiplexing for binary and analog operations // arXiv preprint arXiv:2101.01664. 2021

12.  Franchi R., Castellan C., Ghulinyan M., Pavesi L. Second-harmonic generation in periodically poled silicon waveguides with lateral pin junctions // Optics letters. 2020. V. 45(12). P. 3188–3191. https://doi.org/10.1364/OL.391988

13.  Vecchi C., Castellan C., Ghulinyan M., Bernard M., Pavesi L. Electric field-induced second harmonic generation in silicon waveguide by interdigitated contacts // Integrated photonics platforms: Fundamental research, manufacturing and applications. 2020. V. 11364. P. 113640L. https://doi.org/10.1117/12.2555308

14.  Rudenko A., Ladutenko K., Makarov S., Itina T.E. Photogenerated free carrier induced symmetry breaking in spherical silicon nanoparticle // Advanced Optical Materials. 2018. V. 6(7). P. 1701153. https://doi.org/10.1002/adom.201701153

15.  Bloembergen N., Chang R.K., Jha S.S., Lee C.H. Optical second-harmonic generation in reflection from media with inversion symmetry // Physical Review. 1968. V. 174(3). P. 813. https://doi.org/10.1103/physrev.174.813

16.  Kochetkov F.M., Neplokh V., Fedorov V.V., Bolshakov A.D., Sharov V.A., Eliseev I.E., Mukhin I.S. Fabrication and electrical study of large area free-standing membrane with embedded GaP NWs for flexible devices // Nanotechnology. 2020. V. 31(46). P. 46LT01. https://doi.org/10.1088/1361-6528/abae98

17.  Nasibulin A.G., Ollikainen A., Anisimov A.S., Brown D.P., Pikhitsa P.V., Holopainen S., Kauppinen E.I. Integration of single-walled carbon nanotubes into polymer films by thermo-compression // Chemical engineering journal. 2008. V. 136(2–3). P. 409–413. https://doi.org/10.1016/j.cej.2007.04.033

18. Bonse J., Brzezinka K.W., Meixner A.J. Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy // Applied surface science. 2004. V. 221(1–4). P. 215–230. https://doi.org/10.1016/S0169-4332(03)00881-X

19.  Hoh K., Koyama H., Uda K., Miura Y. Incorporation of oxygen into silicon during pulsed-laser irradiation // Japanese Journal of Applied Physics. 1980. V. 19(7). P. L375. https://doi.org/10.1143/JJAP.19.L375

20.      Fomenko V., Lami J., Borguet E. Nonquadratic second-harmonic generation from semiconductor-oxide interfaces // Phys. Rev. 2001. V. 63. P. 121316. https://doi.org/10.1103/PhysRevB.63.121316