ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-02-23-33

УДК: 551.501.816; 551.510.411

Optical properties and disorder of HgCdTe films grown by molecular beam epitaxy

For Russian citation (Opticheskii Zhurnal):

Ружевич М.С., Мынбаев К.Д., Баженов Н.Л., Дорогов М.В., Варавин В.С., Михайлов Н.Н., Ужаков И.Н., Ремесник В.Г., Якушев М.В. Оптические свойства и разупорядочение плёнок HgCdTe, выращенных методом молекулярно-лучевой эпитаксии // Оптический журнал. 2024. Т. 91. № 2. С. 23–33. http://doi.org/10.17586/1023-5086-2024-91-02-23-33

 

Ruzhevich M.S., Mynbaev K.D, Bazhenov N.L., Dorogov M.V., Varavin V.S., Mikhailov N.N., Uzhakov I.N., Remesnik V.G., Yakushev M.V. Optical properties and disorder of HgCdTe films grown by molecular beam epitaxy [In Russian] // Opticheskii Zhurnal. 2024. V. 91. № 2. P. 23–33. http://doi.org/10.17586/1023-5086-2024-91-02-23-33

For citation (Journal of Optical Technology):

Maxim S. Ruzhevich, Karim D. Mynbaev, Nikolay L. Bazhenov, Maxim V. Dorogov, Vasiliy S. Varavin, Nikolay N. Mikhailov, Ivan N. Uzhakov, Vladimir G. Remesnik, and Maxim V. Yakushev, "Optical properties and disorder of HgCdTe films grown by molecular beam epitaxy," Journal of Optical Technology. 91(2), 77-82 (2024). https://doi.org/10.1364/JOT.91.000077

Abstract:

The subject of study is epitaxial films of Hg1–xCdxTe solid solutions with a mole fraction of CdTe x varying from 0.3 to 0.7 grown by molecular beam epitaxy and intended for the manufacture of photodetecting and laser structures operating in the infrared range. The aim of study is determination of the relationship between the optical and microscopic properties of Hg1–xCdxTe solid solutions at the presence of fluctuations in the composition of the solid solution. The methods are optical transmission, photoluminescence, scanning electron microscopy with energy-dispersive X-ray spectroscopy. Main results. By comparing the results of optical, structural and microscopic studies, it is shown that for the films with x ≈ 0.3 the optical properties research data make it possible to adequately estimate the band gap and determine the chemical composition of the material. The high perfection of this material is shown, and it is confirmed that its disorder is caused only by the specifics of the formation of semiconductor solid solutions. For the films with x ≈ 0.7 it has been established that data on the band gap and composition can only be obtained from ellipsometric studies and measurements of optical transmission, while photoluminescence spectra at temperatures up to room temperature are formed by optical transitions involving carriers localized on large-scale composition fluctuations. In the films with x ≈ 0.7 the presence of uncontrolled acceptor states was also detected, which may indicate the need to optimize the technology of this material. Practical significance. The limits of applicability of photoluminescence studies for characterizing the properties of Hg1–xCdxTe solid solutions have been identified. The need for further optimization of the technology of the materials with large (x ≈ 0.7) compositions is shown.

Keywords:

HgCdTe, luminescence, solid solutions, composition fluctuations

Acknowledgements:
work performed at Rzhanov Institute of Semiconductor Physics SB RAS was carried out with the financial support of a grant from the Ministry of Science and Higher Education of the Russian Federation № 075-15-2020-797 (13.1902.21.0024)

OCIS codes: 120.7000, 250.5230, 260.3060

References:

1.    Kopytko M., Rogalski A. New insights into the ultimate performance of HgCdTe photodiodes // Sensor. Actuat. A–Phys. 2022. V. 339. P. 113511. https://doi.org/10.1016/j.sna.2022.113511

2.   Bhan R.K., Dhar V. Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infrared focal plane arrays and their characterization // Opto-Electronics Rev. 2019. V. 27. P. 174–193. https://doi.org/10.1016/j.opelre.2019.04.004

3.   Ruffenach S., Kadykov A., Rumyantsev V.V., Torres J., Coquillat D., But D., Krishtopenko S.S., Consejo C., Knap W., Winnerl S., Helm M., Fadeev M.A., Mikhailov N.N., Dvoretskii S.A., Gavrilenko V.I., Morozov S.V., Teppe F. HgCdTe-based heterostructures for terahertz photonics // APL Mater. 2017. V. 5. № 3. P. 035503. https://doi.org/10.1063/1.4977781

4.   Mokdad N., Mami F.Z., Boukli-Hacène N., Zitouni K., Kadri A. Theoretical study of Urbach tail behavior in Hg1–xCdxTe in the 0.21  ≤  x  ≤  0.6 medium and far infrared optical ranges // J. Appl. Phys. 2022. V. 132. № 17. P. 175702. https://doi.org/10.1063/5.0101924

5.   Rumyantsev V.V., Razova A.A., Fadeev M.A., Utochkin V.V., Mikhailov N.N., Dvoretsky S.A., Gavrilenko V.I., Morozov S.V. Urbach tail and non-uniformity probe of HgCdTe thin films and quantum well heterostructures grown by molecular beam epitaxy // Opt. Eng. 2020. V. 60. № 8. P. 082007. https://doi.org/10.1117/1.OE.60.8.082007

6.   Gille P., Herrmann K.H., Puhlmann N., Schenk M., Tomm J.W., Werner L. Eg versus x relation from photoluminescence and electron microprobe investigations in p-type Hg1–xCdxTe (0.35 ≤ x ≤ 0.7) // J. Cryst. Growth. 1988. V. 86. № 1–4. P. 593–598. https://doi.org/10.1016/0022-0248(90)90781-F

7.    Lusson A., Fuchs F., Marfaing Y. Systematic photoluminescence study of CdxHg1–xTe alloys in wide composition range // J. Cryst. Growth. 1990. V. 101. № 1–4. P. 673–677. https://doi.org/10.1016/0022-0248(90)91056-V

8.   Mynbaev K.D., Bazhenov N.L., Dvoretsky S.A., Mikhailov N.N., Varavin V.S., Marin D.V., Yakushev M.V. Photoluminescence of molecular beam epitaxy-grown mercury cadmium telluride: Comparison of HgCdTe/GaAs and HgCdTe/Si technologies // J. Electron. Mater. 2018. V. 47. № 8. P. 4731–4736. https://doi.org/10.1007/s11664-018-6364-9

9.   Shao J., Chen L., Lu W., Lü X., Zhu L., Guo S., He L., Chu J. Backside-illuminated infrared photoluminescence and photoreflectance: Probe of vertical nonuniformity of HgCdTe on GaAs // Appl. Phys. Lett. 2010. V. 96. № 12. P. 121915. https://doi.org/10.1063/1.3373595

10. Kurtz S.R., Bajaj J., Edwall D.D., Irvine S.J.C. Infrared photoluminescence characterization of long-wavelength HgCdTe detector materials // Semicond. Sci. Technol. 1993. V. 8. № 6. P. 941–945. https://doi.org/10.1088/0268-1242/8/6s/015

11.  Ruzhevich M.S., Mynbaev K.D., Photoluminescence in Mercury Cadmium Telluride — a historical retrospective. Part II: 2004–2022 // Reviews on Advanced Materials and Technologies. 2022. V. 4. № 4. P. 17–38. https://doi.org/10.17586/2687-0568-2022-4-4-17-38

12.  Chen J., Li L., Lin Y., Liu L., Cui X. Influence of annealing on the surface structure evolution of intrinsic p-type HgCdTe films // Surfaces and Interfaces. 2023. V. 42. Part B. P. 103451. https://doi.org/10.1016/j.surfin.2023.103451

13.  Qiu X.-F., Zhang S.-X., Zhang J., Wu Y., Chen P.-P. Microstructure and optical characterization of mid-wave HgCdTe grown by MBE under different conditions // Crystals. 2021. V. 11. № 3. P. 296. https://doi.org/10.3390/cryst11030296

14.  Shvets V.A., Marin D.V., Remesnik V.G., Azarov I.A., Yakushev M.V., Rykhlitskii S.V. Parametric model of the optical constant spectra of Hg1–xCdxTe and determination of the compound composition // Optics and Spectroscopy. 2020. V. 128. № 12. P. 1948–1953. https://doi.org/10.1134/S0030400X20121042.

15.  Shvets V.A., Marin D.V., Yakushev M.V., Rykhlitskii S.V. Investigation of the temperature dependence of the spectra of optical constants of Hg1–xCdxTe films grown using molecular beam epitaxy // Optics and Spectroscopy. 2021. V. 129. № 1. P. 29–36. https://doi.org/10.1134/S0030400X21010173

16.  Razova A.A., Utochkin V.V., Fadeev M.A., Rumyantsev V.V., Dubinov A.A., Kudryavtsev K.E., Shengurov D.V., Morozova E.E., Skorohodov E.V., Mikhailov N.N., Dvoretsky S.A., Gavrilenko V.I., Morozov S.V. Laser generation at wavelengths 4.1–5.1 µm of CdxHg1–xTe/CdyHg1–yTe quantum-well heterostructures with microdisk resonators // Journal of Applied Spectroscopy. 2022. V. 89. № 5. P. 844–848. https://doi.org/10.1007/s10812-022-01435-0

17.  Chang Y. Absorption of narrow-gap HgCdTe near the band edge including nonparabolicity and the Urbach tail // J. Electron. Mater. 2007. V. 36. № 8. P. 1000–1006. https://doi.org/10.1007/s11664-007-0162-0

18. Moazzami K. Optical absorption properties of HgCdTe epilayers with uniform composition // J. Electron. Mater. 2003. V. 32. № 7. P. 646–650. https://doi.org/10.1007/s11664-003-0046-x

19.  Ruzhevich M.S., Mynbaev K.D., Bazhenov N.L., Dorogov M.V., Dvoretskii S.A., Mikhailov N.N., Remesnik V.G., Uzhakov I.N. Characterization of wide-bandgap layers in laser structures based on CdHgTe // Physics of the Solid State. 2023. V. 65. № 3. P. 402–405. https://doi.org/10.21883/PSS.2023.03.55580.552

20. Becker C.R., Latussek V., Pfeuffer-Jeschke A., Landwehr G., Molenkamp L.W. Band structure and its temperature dependence for type-III HgTe/Hg1–xCdxTe superlattices and their semimetal constituent // Phys. Rev. B. 2000. V. 62. № 15. P. 10353. https://doi.org/10.1103/PhysRevB.62.10353

21.       Izhnin I.I., Voitsekhovsky A.V., Korotaev A.G., Fitsych O.I., Bonchyk A.Yu., Savytskyy H.V., Mynbaev K.D., Varavin V.S., Dvoretsky S.A., Mikhailov N.N., Yakushev M.V., Jakiela R. Optical and electrical studies of arsenic–implanted HgCdTe films grown with molecular beam epitaxy on GaAs and Si substrates // Infr. Phys. Technol. 2017. V. 81. P. 52–58. https://doi.org/10.1016/j.infrared.2016.12.006