ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-02-59-66

УДК: 535.215.1; 535.215.6

Modulation transfer function and effective diffusion length of photogenerated charge carriers in mercury-cadmium-telluride focal-plane diode arrays with different values of geometric parameters

For Russian citation (Opticheskii Zhurnal):

Стучинский В.А., Вишняков А.В., Васильев В.В. Частотно-контрастная характеристика и эффективная длина диффузии фотогенерированных носителей заряда в фотоприёмных матрицах на основе материала кадмий-ртуть-теллур с разными значениями геометрических параметров // Оптический журнал. 2024. Т. 91. № 2. С. 59–66. http://doi.org/10.17586/1023-5086-2024-91-02-59-66

 

Stuchinsky V.A., Vishnyakov A.V., Vasiliev V.V. Modulation transfer function and effective diffusion length of photogenerated charge carriers in mercury-cadmium-telluride focal-plane diode arrays with different values of geometric parameters [In Russian] // Opticheskii Zhurnal. 2024. V. 91. № 2. P. 59–56. http://doi.org/10.17586/1023-5086-2024-91-02-59-66

For citation (Journal of Optical Technology):
-
 
Abstract:

The subject of study is the spatial resolution of two-dimensional focal plane arrays and the effective diffusion length of photogenerated charge carriers in their photosensitive layer. The aim of study is determination of the dependence of the modulation transfer function and the effective diffusion length of photogenerated charge carriers on the size of the diodes and on the thickness of the absorber layer in two-dimensional focal-plane arrays. Method. The diffusion of the charge carriers in the absorber layer of focal plane arrays is analyzed by simulating the stochastic migration of the particles by the Monte Carlo method with a fixed step length. Main results. It was found that at a fixed pitch of focal plane arrays sized 15 µm and at realistic values of the bulk diffusion length of photogenerated charge carriers of 20 µm, the resolution of the arrays improves both with increasing the diode size and with decreasing the absorber-layer thickness under the diodes. Simultaneously, the effective diffusion length of photogenerated charge carriers in both cases decreases. Practical significance. The established dependence of spatial resolution on the geometric parameters will make it possible to design focal-plane-array photodetectors with high spatial resolution.

Keywords:

focal-plane-array detector, diode, absorber, mercury-cadmium-tellurium material, charge carriers, diffusion length, line spread function, modulation transfer function

OCIS codes: 040.1240, 040.3060, 040.5160, 040.6070, 130.5990, 350.5730

References:

1.    Rogalski A. Infrared detectors. Second edition. Boca Raton: CRC Press, 2010. 898 p.

2.   Lloyd J.M. Thermal imaging systems. N.-Y.: Plenum Press, 1975. 456 p.

3.   Rogalski A. HgCdTe infrared detector material: history, status and outlook // Rep. Prog. Phys. 2005. V. 68. P. 2267–2336. https://doi.org/10.1088/0034-4885/68/10/R01

4.   Lutz H., Breiter R., Eich D., Figgemeier H., Fries P., Rutzinger S., Wendler J. Small pixel pitch MCT IR-modules // Proc. of SPIE. 2016. V. 9819. 98191Y. https://doi.org/10.1117/12.2223841

5.   Rogalski A. Progress in focal plane array technologies // Progress in Quantum Electronics. 2012. V. 36. P. 342–473. https://doi.org/10.1016/j.pquantelec.2012.07.001

6.   Hudson R.D. Infrared system engineering. N.-Y.: Wiley, 1969. 642 p.

7.    Gaussorgues G., La thermographie infrarouge: principes-technologie-applications. Paris: Lavoisier, 1984. 481 p.

8.   Kriksunov L.Z. Handbook on infrared equipment [in Russian]. Moscow: Sov. Radio, 1978. 400 p.

9.   Berthoz J., Rubaldo L., Brunner A., Maillard M., Vojetta G., Jomard N., Courtas S., Péré -Laperne N., Rochette F., Gravrand O., Billon-Lanfrey D. Range infrared detector issues in the SWAPc and pitch reduction context // Proc. of SPIE. Infrared Technology and Applications XLVI. 2020. V. 11407. 1140715 (5 May 2020). https://doi.org/10.1117/12.2561306

10. Berthoz J., Grille R., Rubaldo L., Gravrand O., Kerlain A., Pere-Laperne N., Martineau L., Chabuel F., Leclercq D. Modeling and characterization of MTF and spectral response at small pitch on mercury cadmium telluride // J. Electron. Materials. 2015. V. 44. № 9. P. 3157–3162. https://doi.org/ 10.1007/s11664-015-3857-7

11.  Boreman G.D. Modulation transfer function in optical and electro-optical systems. Second edition. 2021. V. TT121. 156 p. https://doi.org/10.1117/3.419857

12.  Gunapala S.D., Ting D.Z., Soibel A., Rafol S.B., Khoshakhlagh A., Mumolo J.M., Liu J.K., Keo S.A., Hill C.J. Modulation transfer function of infrared focal plane arrays // Proc. of the IEEE Photonics Conference. Bellevue, USA. 08–12 Sept. 2013. P. 600–601. https://doi.org/10.1109/IPCon.2013.6656437

13.  Vishnyakov A.V., Stuchinsky V.A., Brunev D.V., Zverev A.V., Dvoretskii S.A. Analysis of charge-carrier diffusion in the photosensing films of HgCdTe infrared focal plane array detectors // J. Appl. Phys. 2015. V. 118. № 12. P. 124508-(1–9). https://doi.org/10.1063/1.4931614

14.  Martineau L., Rubaldo L., Chabuel F., Gravrand O. MTF optimization of MCT detectors // Proc. of SPIE. 2013. V. 8889. P. 88891B. https://doi.org/10.1117/12.2028883

15.  Stuchinsky V.A., Vishnyakov A.V. A simple approach to the Monte Carlo modeling of the diffusion process of optically excited charge carriers in photovoltaic focal-plane-array detectors and some applications of this approach [in Russian] // Proc. of the XXV International Scientific and Engineering Conference on Photoelectronics and Night Viewers. V. 2. Moscow. Russia. May 24–26. 2018. Orion Scientific and Production Association. OFSET Publishing House. P. 430–433.

16.       Appleton B., Hubbard T., Glasmann A., Bellotti E. Parametric numerical study of the modulation transfer function in small-pitch InGaAs/InP infrared arrays with refractive microlenses // Optics Express. 2018. V. 26. № 5. P. 5310–5326. https://doi.org/ 10.1364/OE.26.005310