DOI: 10.17586/1023-5086-2024-91-02-6-22
УДК: 539.216
Unipolar barrier structures based on n-HgCdTe with superlattices as a barrier. Review
Full text on elibrary.ru
Publication in Journal of Optical Technology
Voitsekhovskii A.V., Dzyadukh S.M., Gorn D.I., Mikhailov N.N., Dvoretsky S.A., Sidorov G.Yu., Yakushev M.V. Unipolar barrier structures based on n-HgCdTe with superlattices as a barrier. Review [In Russian] // Opticheskii Zhurnal. 2023. V. 91. № 2. P. 6–22. http://doi.org/10.17586/1023-5086-2024-91-02-6-22
Alexander V. Voitsekhovskii, Stanislav M. Dzyadukh, Dmitry I. Gorn, Nikolay N. Mikhailov, Sergey A. Dvoretsky, Georgy Yu. Sidorov, and Maxim V. Yakushev, "Unipolar barrier structures based on n-HgCdTe with superlattices as a barrier [Review]," Journal of Optical Technology. 91(2), 67-76 (2024). https://doi.org/10.1364/JOT.91.000067
The subject of study is the application of superlattices as barrier layers in unipolar barrier nBn structures based on n-HgCdTe grown by molecular beam epitaxy. The aim of study is the analysis of the current state of theoretical and experimental research on the creation of unipolar photosensitive barrier nBn structures based on Hg1–xCdxTe grown by molecular beam epitaxy with superlattices as the barrier layer. Method. To achieve the goal set in the work, the results of theoretical and experimental studies of the use of superlattices as the barrier layers in unipolar barrier nBn structures based on n-HgCdTe grown by molecular beam epitaxy were analyzed. Due to the fact that ab initio modeling of the energy diagram of superlattices in general and superlattices based on HgCdTe, in particular, is an extremely labor-intensive task, the results of similar calculations performed by other authors, as well as the results of experimental studies that verify these calculations were analyzed for the purpose of assessing the applicability of superlattices as the barrier in HgCdTe nBn structures. The goal was to determine the optimal values of the superlattice parameters based on this analysis. Main results. Based on the analysis of the results of currently known theoretical and experimental work in the field of using superlattices as barriers in nBn structures based on n-HgCdTe, the ranges of optimal values of superlattice parameters (compositions and thicknesses of superlattice barrier layers and quantum wells) were determined. The need for additional research on the protection (passivation) of the side faces during the manufacture of experimental samples in the configuration of mesa structures to minimize the contribution of surface leakage currents to the dark current of the photosensitive structure is noted separately. Practical significance. This work was aimed at analyzing the current state of the research in the area under consideration and at concluding about what configurations of superlattice barriers seem to be the most optimal. Taking into account the fact that the use of superlattices in barrier nBn structures based on n-HgCdTe is considered to be the most promising way to eliminate the potential barrier for minority charge carriers, the results of this work can form the basis for developing the design of photosensitive structures in the MWIR and LWIR ranges and the subsequent creation of photodetector elements.
barrier structure, HgCdTe, nBn, superlattice, molecular beam epitaxy, unipolar struc-ture, photodetector
Acknowledgements:this work was supported by the Russian Science Foundation, project № 23-62-10021, https://rscf.ru/project/23-62-10021/
OCIS codes: 250.5590, 040.4200, 040.3060
References:1. Rogalski А. Infrared and terahertz detectors. 3 Edition. Milton Park: Taylor & Francis, 2019. 1066 p. https://doi.org/10.1201/b21951
2. Kinch M.A. The future of infrared; III–Vs or HgCdTe? // J. Electron. Mater. 2015. V. 44. № 9. P. 2969–2976. https://doi.org/10.1007/s11664-015-3717-5
3. Gu R., Antoszewski J., Lei W., Madni I., Umana-Membrenao G., Faraone L. MBE growth of HgCdTe on GaSb substrates for application in next generation infrared detectors // J. Cryst. Growth. 2017. V. 468. P. 216. https://doi.org/10.1016/j.jcrysgro.2016.12.034
4. Maimon S., Wicks G.W. nBn detector, an infrared detector with reduced dark current and higher operating temperature // Appl. Phys. Lett. 2006. V. 89. P. 151109. https://doi.org/10.1063/1.2360235
5. Pedrazzani J.R., Maimon S., Wicks G.W. Use of nBn structures to suppress surface leakage currents in unpassivated InAs infrared photodetectors // Elec-tron. Lett. 2008. V. 44. № 25. P. 1487. https://doi.org/10.1049/el:20082925
6. Reine M., Pinkie B., Schuster J., Bellotti E. Numerical simulation and analytical modeling of InAs nBn infrared detectors with n-type barrier layers // J. Electron. Mater. 2014. V. 43. № 8. P. 2915–2934. https://doi.org/10.1007/s11664-014-3148-8
7. Soibel A., Keo S.A., Fisher A., Hill C.J., Luong E., Ting D.Z., Gunapala S.D., Lubyshev D., Qiu Y., Fastenau J.M., Liu A.W.K. High operating temperature nBn detector with monolithically integrated microlens // Appl. Phys. Lett. 2018. V. 112. № 4. P. 041105. https://doi.org/10.1063/1.5011348
8. Sednev M.V., Boltar' K.O., Irodov N.A., Demidov S.S., Research of photoelectric interrelation of elements in a photodiode matrix on the basis of InGaAs heteroepetaxy structures [in Russian] // Applied Physics. 2015. № 3. P. 73–79.
9. Boltar' K.O., Irodov N.A., Sednev M.V., Marmalyuk A.A., Ladugin M.A., Ryaboshtan Yu.L. Research of photodiodes based on the InGaAs/nBp structures with a boundary wavelength up to 2.06 microns [in Russian] // Applied Physics. 2017. № 6. P. 49–53.
10. Martyniuk P., Kopytko M., Rogalski A. Barrier infrared detectors // Opto-Electron. Rev. 2014. V. 22. № 2. P. 127–146. https://doi.org/10.2478/s11772-014-0187-x
11. Itsuno A. M. Bandgap-engineered Mercury Cadmium Telluride infrared detector structures for reduced cooling requirements // Doctoral dissertation. Ann Arbor: University of Michigan, 2012. 197 p.
12. Filatov A.V., Susov E.V., Karpov V.V. Formation, nature, and annealing of defects in Cd0.2Hg0.8Te heteroepitaxial structures and photoresistors subjected to ion etching // Journal of Optical Technology. 2017. V. 84. № 4. P. 275–280. https://doi.org/10.1364/JOT.84.000275
13. Burlakov I.D., Kulchitsky N.A., Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., Gorn D.I. Unipolar semiconductor barrier structures for infrared photodetector arrays (Review) // Journal of Communications Technology and Electronics. 2021. V. 66. № 9. P. 1084–1091. https://doi.org/10.1134/S1064226921090035
14. Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., Gorn D.I., Dvoretsky S.A., Mikhailov N.N., Sidorov G.Y. Ch. 6. II–VI semiconductor-based unipolar barrier structures for infrared photodetector arrays in handbook of II–VI semiconductor-based sensors and radiation detectors. Cham: Springer, 2023. P. 135–154. https://doi.org/10.1134/S1064226921090035
15. Shi Q., Zhang S.-K., Wang J.-L., Chu J.-H. J. Progress on nBn infrared detectors // Infrared Millim. Waves. 2022. V. 41. № 1. P. 139–150. https://doi.org/10.11972/j.issn.1001-9014.2022.01.010
16. Kopytko M., Wrobel J., Jozwikowska K., Rogalski A., Antoszewski J., Akhavan N.D., Umana-Membreno G.A., Faraone L., Becker C.R. Engineering the bandgap of unipolar HgCdTe-based nBn infrared photodetectors // Journal of Electronic Materials. 2015. V. 44. № 1. P. 158–166. https://doi.org/ 10.1007/s11664-014-3511-9
17. Benyaya J., Martyniuk P., Kopytko M., Antoszewski J., Gawron W., Madejczyk P. nBn HgCdTe infrared detector with HgTe/CdTe SLs barrier // IEEE Xplore. 2015 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). Taipei, Taiwan. September 7–11, 2015. P. 179–180. https://doi.org/10.1109/NUSOD.2015.7292881
18. Benyahia D., Martyniuk P., Kopytko M., Antoszewski J., Gawron W., Madejczyk P., Rutkowski J., Gu R., Faraone L. nBn HgCdTe infrared detector with HgTe(HgCdTe)/CdTe SLs barrier // Opt. Quant. Electron. 2016. V. 48. P. 215. https://doi.org/10.1007/s11082-016-0439-8
19. Gu R., Lei W., Antoszewski J., Madni I., Umana-Menbreno G., Faraone L. Recent progress in MBE grown HgCdTe materials and devices at UWA // Proc. of SPIE. 2016. V. 9819. 98191Z. https://doi.org/10.1117/12.2222997
20. Akhavan N.D., Umana-Membreno G.A., Antoszweski J., Faraone L. Self-consistent carrier transport in band engineered HgCdTe nBn detector // IEEE Xplore. 2016 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). Sydney, NSW, Australia. July 11–15 2016. P. 119–120. https://doi.org/10.1109/NUSOD.2016.7547060
21. Akhavan N.D., Umana-Membreno G.A., Gu R., Asadnia M., Antoszewski J., Faraone L. Superlattice barrier HgCdTe nBn infrared photodetectors: Validation of the effective mass approximation // IEEE Transactions On Electron Devices. 2016. V. 63. № 12. P. 4811–4818. https://doi.org/ 10.1109/TED.2016.2614677
22. Akhavan N.D., Umana-Membreno G.A., Gu R. Optimization of superlattice barrier HgCdTe nBn infrared photodetectors based on an NEGF approach // IEEE Transactions On Electron Devices. 2018. V. 65. № 2. P. 591–598. https://doi.org/10.1109/TED.2017.2785827
23. Izhnin I.I., Kurbanov K.R., Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., Dvoretsky S.A., Mikhailov N.N., Sidorov G.Y., Yakushev M.V. Uni-polar superlattice structures based on MBE HgCdTe for infrared detection // Applied Nanoscience. 2020. № 10. P. 4571–4576. https://doi.org/10.1007/s13204-020-01297-y
24. Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., Dvoretsky S.A., Mikhailov N.N., Sidorov G.Yu., Yakushev M.V. Diffusion-limited dark currents in mid-wave infrared HgCdTd-based nBn structures with Al2O3 passivation // J. Phys. D: Appl. Phys. 2020. V. 53. 055107 (6pp). https://doi.org/10.1088/1361-6463/ab5487
25. Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., Dvoretsky S.A., Mikhailov N.N., Sidorov G.Yu. Electrical properties of nBn structures based on HgCdTe grown by molecular beam epitaxy on GaAs substrates // Infrared Physics and Technology. 2019. V. 102. 103035. https://doi.org/10.1016/j.infrared.2019.103035
26. Izhnin I.I., Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., Dvoretsky S.A., Mikhailov N.N., Sidorov G.Y., Yakushev M.V. Admittance of barrier nanostructures based on MBE HgCdTe // Applied Nanoscience. 2020. № 12. P. 403–409. https://doi.org/10.1007/s13204-020-01636-z
27. Voitsekhovskii A.V., Dzyadukh S.M., Gorn D.I., Dvoretsky S.A., Mikhailov N.N., Sidorov G.Yu., Yakushev M.V. Dark current components of nB(SL)n structures based on HgCdTe for a wide range of bias voltages [in Russian] // Applied Physics. 2023. № 4. P. 78–86. https://doi.org/10.51368/1996-0948-2023-4-78-86
28. Voitsekhovskii A.V., Dzyadukh S.M., Gorn D.I., Dvoretskii S.A., Mikhailov N.N., Sidorov G.Yu., Yakushev M.V. Determination of the electrical properties of MIS based on the nB(SL)n-structure of HgCdTe in a wide temperature range [in Russian] // Applied Physics. 2023. № 5. P. 75–83. https://doi.org/10.51368/1996-0948-2023-5-75-83