DOI: 10.17586/1023-5086-2024-91-02-67-75
УДК: 535.215.1; 535.215.6
The influence of grid guard diodes with a floating n-region potential on the spatial resolution of n-on-p linear HgCdTe photodetectors
Full text on elibrary.ru
Publication in Journal of Optical Technology
Васильев В.В., Вишняков А.В., Сабинина И.В., Сидоров Г.Ю., Стучинский В.А. Влияние охранных сеточных диодов с плавающим потенциалом n-области на пространственное разрешение n-на-p линейных HgCdTe-фотоприёмников // Оптический журнал. 2024. Т. 91. № 2. С. 67–75. http://doi.org/10.17586/1023-5086-2024-91-02-67-75
Vasiliev V.V., Vishnyakov A.V., Sabinina I.V., Sidorov G.Yu., Stuchinsky V.A. The influence of grid guard diodes with a floating n-region potential on the spatial resolution of n-on-p linear HgCdTe photodetectors [In Russian] // Opticheskii Zhurnal. 2024. V. 91. № 2. P. 67–75. http://doi.org/10.17586/1023-5086-2024-91-02-67-75
Subject of study. Spatial resolution of n-on-p linear focal-plane-array detectors based on mercury-cadmium-tellurium material and modified via introducing a grid guard diode with a floating n-region potential into their structure. The aims of study are: to establish the influence of the grid guard diode with the floating n-region potential on the line spread function and modulation transfer function of the linear n-on-p photodetectors; to study the possibility of using structural defects in the photodetectors under the study for implementing a continuous action of the guard diode as a sink for photogenerated charge carriers. Method. The diffusion of photogenerated charge carriers in the absorber layer of focal-plane-array detectors was modeled using the Monte Carlo method, and the experimental study of the spatial resolution of such photodetectors was performed using spot-scan measurements followed by the calculation of the modulation transfer function of photodetector structures. Main results. It is shown that the presence of the grid diode with the floating n-region potential in the structure of n-on-p photodetector leads to broadening of the base and to decrease of the width of the upper part of the line-spread-function peak of linear focal plane arrays with the corresponding modification of their modulation transfer function; however, on the whole no significant improvement in the resolution of the modified photodetector structure was achieved. Practical significance. The results of the present study indicate the need to ground the guard diodes in the studied photodetectors. These results can also be used in the development of methods for optimizing/enhancing the spatial resolution of focal-plane-array detectors.
guard diode, linear photodetector, mercury-cadmium-tellurium material, charge carriers, injection, line spread function, modulation transfer function
OCIS codes: 040.1240, 040.3060, 040.5160, 040.6070, 130.5990, 350.5730
References:1. Rogalski A. Infrared detectors. Second edition. Boca Raton: CRC Press, 2010. 898 p.
2. Gaussorgues G. La thermographie infrarouge: principes-technologie-applications. Paris: Lavoisier, 1984. 481 p.
3. Akın O., Demir H.V. High-efficiency low-crosstalk dielectric metasurfaces of mid-wave infrared focal plane arrays // Appl. Phys. Lett. 2017. V. 110. P. 143106. https://doi.org/10.1063/1.4979664
4. Boreman G.D. Modulation transfer function in optical and electro-optical systems. Second edition. 2021. V. TT121. 156 p. https://doi.org/10.1117/3.419857
5. Gunapala S.D., Ting D.Z., Soibel A., Rafol S.B., Khoshakhlagh A., Mumolo J.M., Liu J.K., Keo S.A., Hill C.J. Modulation transfer function of infrared focal plane arrays // Proc. of the IEEE Photonics Conference. Bellevue, USA. 08–12 Sept. 2013. P. 600–601. https://doi.org/10.1109/IPCon.2013.6656437
6. Kinch M.A. The future of infrared; III–Vs or HgCdTe? // J. Electron. Mater. 2015. V. 44. P. 2969–2976. https://doi.org/10.1007/s11664-015-3717-5
7. Armstrong J.M., Skokan M.R., Kinch M.A., Luttmer J.D. HDVIP five-micron pitch HgCdTe focal plane arrays // Proc. SPIE. 2014. V. 9070. P. 907033-1. https://doi.org/10.1117/12.2053286
8. Ziegler J., Bruder M., Finck M., Kruger R., Menger P., Simon Th., Wollrab R. Advanced sensor technologies for high performance infrared detectors // Infrared Physics & Technology. 2002. V. 43. P. 239–243. https://doi.org/10.1016/S1350-4495(02)00146-9
9. Kobayashi M., Wada H., Okamura T., Kudo J., Tanikawa K., Hikida S., Miyamoto Y., Miyazaki S., Yoshida Y. 480ґ8 hybrid HgCdTe infrared focal plane arrays for high-definition television format // Opt. Eng. 2002. V. 41. № 8. P. 1876–1885. https://doi.org/10.1117/1.1486460
10. Gassmann K.U., Eich D., Fick W., Figgemeier H., Hanna S., Thöt R. Low dark current MCT-based focal plane detector arrays for the LWIR and VLWIR developed at AIM // Proc. SPIE 9639, Sensors, Systems, and Next-Generation Satellites XIX. 96390P (14 October 2015). https://doi.org/10.1117/12.2194776
11. Tennant W.E., Gulbransen D.J., Roll A., Carmody M., Edwall D., Julius A., Dreiske P., Chen A., Mclevige W., Freeman S., Lee D., Cooper D.E., Piquette E. Small-pitch HgCdTe photodetectors // J. Electron. Mater. 2014. V. 43. № 8. P. 3041–3046. https://doi.org/10.1007/s11664-014-3192-4
12. Arias J.M., Zandian M., Bajaj J., Pasko J.G., Bubulac L.O., Shin S.H., De Wames R.E. Molecular beam epitaxy HgCdTe growth-induced void defects and their effect on infrared photodiodes // J. Electron. Mater. 1995. V. 24. № 5. P. 521–524. https://doi.org/10.1007/BF02657957
13. Varavin V.S., Dvoretskii S.A., Mikhailov N.N., Remesnik V.G., Sabinina, I.V., Sidorov Yu.G., Shvets V.A., Yakushev M.V., Latyshev A.V. Molecular beam epitaxy of CdHgTe: Current state and horizons // Optoelectron. Instrum. Data Process. 2020. V. 56. Iss. 5. P. 456–469. https://doi.org/10.3103/S8756699020050143
14. Stuchinsky V.A., Vishnyakov A.V. A simple approach to the Monte Carlo modeling of the diffusion process of optically excited charge carriers in photovoltaic focal-plane-array detectors and some applications of this approach [in Russian] // Proc. of the XXV International Scientific and Engineering Conference on Photoelectronics and Night Viewers. V. 2. Moscow. Russia. May 24–26. 2018. M.: Orion Scientific and Production Association. OFSET Publishing House, 2018. P. 430–433.
15. Vasiliev V.V., Predein A.V., Varavin V.S., Mikhailov N.N., Dvoretskii S.A., J.V. Gumenjuk-Sichevska, Golenkov O.G., Reva V.P., Sabinina I.V., Sidorov Yu.G., Susliakov A.O., Sizov F.F., Aseev A.L. Linear HgCdTe IR FPA 288ґ4 with bidirectional scanning // Opto-Electronics Review. 2010. V. 18. № 3. P. 332–337. https://doi.org/10.2478/s11772-010-1021-z