DOI: 10.17586/1023-5086-2024-91-02-76-87
УДК: 538.911: 535.33:535.345.61:538.935
Growth and characterization of nBn structures based on CdxHg1–xTe for photodetectors in the 3–5 µm spectral range
Full text on elibrary.ru
Publication in Journal of Optical Technology
Михайлов Н.Н., Варавин В.С., Дворецкий С.А., Менщиков Р.В., Ремесник В.Г., Ужаков И.Н. Рост и характеризация nBn-структур на основе СdхHg1–хTe для фотоприёмников спектрального диапазона 3–5 мкм // Оптический журнал. 2024. Т. 91. № 2. С. 76–87. http://doi.org/10.17586/1023-5086-2024-91-02-76-87
Mikhailov N.N., Varavin V.S., Dvoretsky S.A., Menshchikov R.V., Remesnik Vl.G., Uzhakov I.N. Growth and characterization of nBn structures based on CdxHg1–xTe for photodetectors in the 3–5 µm spectral range [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 2. P. 76–87. http://doi.org/10.17586/1023-5086-2024-91-02-76-87
Nikolay N. Mikhailov, Vasily S. Varavin, Sergey A. Dvoretsky, Roman V. Menshchikov, Vladimir G. Remesnik, and Ivan N. Uzhakov, "Growth and characterization of nBn structures based on CdxHg1–xTe for photodetectors in the 3–5 µm spectral range," Journal of Optical Technology. 91(2), 105-111 (2024). https://doi.org/10.1364/JOT.91.000105
The subject of study is barrier nBn structures based on (013)CdxHg1–хTe/CdTe/ZnTe/GaAs solid solutions. The purpose of the work is the creation of barrier nBn structures based on CdxHg1–xTe solid solutions with given composition distribution profile and doping level intended for the manufacture of highly sensitive infrared photodetectors in the spectral range of 3–5 microns operating at elevated temperatures. Method. The growth of barrier nBn HgCdTe structures was carried out by molecular beam epitaxy on (013)GaAs substrates with ZnTe and CdTe buffer layers and control of the thickness and composition of the layers in real time by a high-speed ellipsometric method. Doping of the layers during the growth process to the required level was carried out with indium from a Knudsen-type effusion source with precision control of its temperature (flow). The composition and thickness of the layers were determined during the growth process from in-situ measurements of ellipsometric parameters, transmission and reflection spectra with sequential etching of the ex-situ layers. The concentration of the majority charge carriers in the grown structures was determined from Hall measurements by the Van Der Pauw method using layer-by-layer etching. Main results. The barrier nBn structures based on HgCdTe have been obtained. The parameters of the composition and thickness of the layers were 0.3–0.35, 0.6–0.8, 0.31–0.36 mole fractions and 3–4 µm, 0.2–0.35 µm, 1–1.3 µm for the absorbent, barrier and contact layers, respectively. The concentration of the main carriers was (0.6–3)х1016 cm–3, (0.6–3)х1016 cm–3 and (0.9–5)х1017 cm–3 for the absorbing, barrier and contact layers, respectively. A good correlation between the distribution profile of the composition and the doping level over the thickness of the grown structure, which is specified during the growth process with the results of subsequent post-growth measurements, has been shown. Practical significance. The results of growing and characterizing the nBn structure obtained in this work are intended for the development of infrared photodetectors for SWaP (Size, Weight and Power) technology with high sensitivity in the spectral range of 3–5 microns of various formats, operating at elevated temperatures, for infrared optoelectronic and thermal imaging devices.
nBn structures, composition, thickness, ellipsometric parameters, electron concentration, doping
Acknowledgements:OCIS codes: 160.6000, 190.2620, 190.4350
References:1. Klipstein P.C. Depletion-less photodiode with suppressed dark current and method for producing the same // US Patent 7 928 473 B2. 2011. Publ. Apr. 19, 2011
2. Maimon S., Wicks G.W. nBn detector, an infrared detector with reduced dark current and higher operating temperature // Appl. Phys. Lett. 2006. V. 89. P. 151109. https://doi.org/10.1063/1.2360235
3. Klipstein O., Klin S., Grossman N., Snapi I., Lukomsky D., Aronov M., Yassen A., Glozman T., Fishman E., Berkowicz O., Magen I., Shtrichman I., Weiss E. XBn barrier photodetectors based on InAsSb with high operating temperatures // Opt. Eng. 2011. V. 50. 061002–1–10. https://doi.org/10.1117/1.3572149
4. Klipstein P., Klin O., Grossman S., Snapi N., Yaakobovitz B., Brumer M., Lukomsky I., Aronov D., Yassen M., Yofis B., Glozman A., Fishman T., Berkowicz E., Magen O., Shtrichman I., Weiss E. MWIR InAsSb XBn detectors for high operating temperatures // Proc. SPIE 7660. Infrared Technology and Applications XXXVI. 76602Y (3 May 2010). https://doi.org/10.1117/12.849503
5. Weiss E., Klin O., Grossmann S., Snapi N., Lukomsky I., Aronov D., Yassen M., Berkowicz E., Glozman A., Klipstein P., Fraenkel A., Shtrichman I. InAsSb-based XBnn bariodes grown by molecular beam epitaxy on GaAs // J. Crystal Growth. 2012. V. 339. P. 31–35. https://doi.org/10.1016/j.jcrysgro.2011.11.076
6. Savich G.R., Sidor D.E., Du X., Wicks G., Debnath M.C., Mishima T.D., Santos M.B., Golding T.D., Jain M., Craig A.P. et al. III-V semiconductor extended short-wave infrared detectors // J. Vac. Sci. Technol. B. 2017. V. 35. P. 02B105. https://doi.org/10.1116/1.4975340
7. Ting D.Z., Soibel A., Khoshakhlagh A., Keo S.A., Rafol S.B., Fisher A.M., Pepper B.J., Luong E.M., Hill C.J., Gunapala S.D. Advances in III-V semiconductor infrared absorbers and detectors // Infrared Phys. Technol. 2019. V. 97. P. 210–216. https://doi.org/10.1016/j.infrared.2018.12.034
8. Ting D.Z., Soibel A., Khoshakhlagh A., Rafol S.B., Keo S., Höglund L., Fisher A.M., Luong E.M., Gunapala S.D. Mid-wavelength high operating temperature barrier infrared detector and focal plane array // Appl. Phys. Lett. 2018. V. 113. P. 021101. https://doi.org/10.1063/1.5033338
9. Wu D., Li J., Dehzangi A., Razeghi M. Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice // AIP Adv. 2020. V. 10. № 2. P. 025018. https://doi.org/10.1063/1.5136501
10. Klipstein P.C., Avnon E., Benny Y., Fraenkel R., Glozman A., Grossman S., Klin O., Langoff L., Livneh Y., Lukomsky M., Nitzani P., Shkedy L., Shtrichman I., Snapi N., Tuito A., Weiss E. InAs/GaSb Type II superlattice barrier devices with a low dark current and a high-quantum efficiency // Proc. SPIE. 2014. V. 9070. P. 90700U. https://doi.org/10.1117/12.2049825
11. Ting D.Z., Hill C.J., Soibel A., Keo S., Mumolo J., Nguyen J., Gunapala S.D. A high-performance long wavelength superlattice complementary barrier infrared detector // Appl. Phys. Lett. 2009. V. 95. P. 023508. https://doi.org/10.1063/1.3177333
12. Ting D.Z., Soibel A., Khoshakhlagh A., Keo S., Rafol S.B., Fisher A.M., Pepper B.J., Luong E.M., Hill C.J., Gunapala S.D. Antimonide e-SWIR, MWIR, and LWIR barrier infrared detector and focal plane array development // Proc. SPIE. 2018. V. 10624. P. 10. https://doi.org/10.1117/12.2305248
13. Tennant W.E. "Rule 07" revisited: still a good heuristic predictor for p/n HgCdTe photodiode performance? // J. Electron. Mater. 2010. V. 39 № 7. P. 1030–1035. https://doi.org/10.1007/s11664-010-1084-9
14. Rogalski A., Martyniuk P., Kopytko M., Madejczyk P., Krishna S. InAsSb-based infrared photodetectors: Thirty years later on // Sensors. 2020. V. 20. № 24. P. 7047. https://doi.org/10.3390/s20247047
15. Lei W., Antoszewski J., Faraone L. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors // Appl. Phys. Rev. 2015. V. 2. P. 041303. https://doi.org/10.1063/1.4936577
16. Hanna S., Eich D., Mahlein M., Fick W., Schirmacher W., Thöt R., Wendler J., Figgemeier H. MCT-based LWIR and VLWIR 2D focal plane arrays for low dark currents application at AIM // J. Electron. Mater. 2016. V. 45. № 9. P. 4542–4551. http://doi.org/10.1007/s11664-016-4523-4
17. Itsuno A.M., Phillips J.D., Velicu S. Mid-wave infrared HgCdTe nBn photodetector // Appl. Phys. Lett. 2012. V. 100. P. 161102. https://doi.org/10.1063/1.4704359
18. Itsuno A.M., Phillips J.D., Velicu S. Design of an Auger-suppressed unipolar HgCdTe NBnN photodetector // J. Electron. Mater. 2012. V. 41. № 10. P. 2886–2892. https://doi.org/10.1007/s11664-012-1992-y
19. Kopytko M., Keblowski A., Gawron W., Madejczyk P., Kowalewski A., Jozwikowski K. High-operating temperature MWIR nBn HgCdTe detector grown by MOCVD // Opto-Electron. Rev. 2013. V. 21. № 4. P. 402–405. https://doi.org/10.2478/s11772–013–0101–y
20. Kopytko M., Kebłowski A., Gawron W., Martyniuk P., Madejczyk P., Józwikowski K., Kowalewski A., Markowska O., Rogalski A. MOCVD grown HgCdTe barrier detectors for MWIR high-operating temperature operation // Optical Engineering. 2015. V. 54. № 10. P. 105105. https://doi.org/10.1117/1.OE.54.10.105105
21. Gravrand O., Boulard F., Ferron A., Ballet P., Hassis W. A new nBn IR detection concept using HgCdTe material // J. Electron. Mater. 2015. V. 44. № 9. P. 3069–3075. https://doi.org/10.1007/s11664-015-3821-6
22. He Li., Wu Y., Chen L., Wang S.L., Yu M.F., Qiao Y.M., Yang J.R., Li Y.J., Ding R.J., Zhang Q.Y. Composition control and surface defects of MBE-grown HgCdTe // Journal of Crystal Growth. 2001. V. 227–228. P. 677–682. https://doi.org/10.1016/S0022-0248(01)00801-6
23. Jówikowski K., Rogalski A. Effect of dislocations on performance of LWIR HgCdTe photodiodes // J. Electron. Mater. 2000. V. 29. № 6. P. 736–741. https://doi.org/10.1007/s11664-000-0217-y
24. Sidorov Yu.G., Dvoretski S.A., Mikhalov N.N., Yakushev M.V., Varavin V.S., Antsiferov A.P. Molecular-beam epitaxy of narrow-band CdxHg1–xTe. Equipment and technology // J. Opt. Technol. 2000. V. 67. № 1. P. 31–36. https://doi.org/10.1364/JOT.67.000031
25. Spesivtsev E.V., Rykhlitskii S.V., Shvets V.A. Development of methods and instruments for optical ellipsometry at the Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences // Optoelectron. Instrument. Data Process. 2011. V. 47. P. 419. https://doi.org/10.3103/S8756699011050219
26. Dvoretsky S., Mikhailov N., Sidorov Yu., Shvets V., Danilov S., Wittman B., Ganichev S. Growth of HgTe quantum wells for IR to THz detectors // J. Electron. Mater. 2010. V. 39. № 7. P. 918. https://doi.org/10.1007/s11664-010-1191-7
27. Hansen G.L., Schmit J.L., Casselman T.N. Energy gap versus alloy composition and temperature in Hg1–xCdxTe // J. Appl. Phys. 1982. V. 53. P. 7099–7101. https://doi.org/10.1063/1.330018
28. Petritz R.L. Theory of an experiment for measuring the mobility and density of carriers in the space-charge region of a semiconductor surface // Phys. Rev. 1958. V. 110. P. 1254–1262. https://doi.org/10.1103/PhysRev.110.1254
29. Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., Dvoretsky S.A., Mikhailov N.N., Sidorov G.Y., Yakushev M.V. Diffusion-limited dark currents in mid-wave infrared HgCdTe-based nBn structures with Al2O3 passivation // Journal of Physics D: Applied Physics. 2020. V. 53. P. 055107. https://doi.org/10.1088/1361-6463/ab5487