DOI: 10.17586/1023-5086-2024-91-02-88-98
УДК: 535.551:538.911
Investigation of the influence of crystal perfection on the magnitude of stresses in (013)HgCdTe/CdTe/ZnTe/GaAs structures using second harmonic generation based on phase synchronism
Full text on elibrary.ru
Publication in Journal of Optical Technology
Ступак М.Ф., Дворецкий С.А., Михайлов Н.Н., Макаров С.Н., Елесин А.Г. Локальный контроль и измерение слабых напряжений на поверхности структур (013)HgCdTe/CdTe/ZnTe/GaAs с помощью генерации второй гармоники // Оптический журнал. 2024. Т. 91. № 2. С. 88–98. http://doi.org/10.17586/1023-5086-2024-91-02-88-98
Stupak M.F., Dvoretsky S.A., Mikhailov N.N., Makarov S.N., Elesin A.G. Local control and measurement of weak stresses on the surface of (013)HgCdTe/CdTe/ZnTe/GaAs structures using second harmonic generation [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 2. P. 88–98. http://doi.org/10.17586/1023-5086-2024-90-05-88-98
Mikhail F. Stupak, Sergey A. Dvoretsky, Nikolai N. Mikhailov, Sergey N. Makarov, and Ahdrei G. Elesin, "Investigation of the influence of crystal perfection on the magnitude of stresses in (013)HgCdTe/CdTe/ZnTe/GaAs structures using second harmonic generation based on phase matching," Journal of Optical Technology. 91(2), 112-117 (2024). https://doi.org/10.1364/JOT.91.000112
The subject of study is mechanical stresses in the surface layer of the HgCdTe/CdTe/ZnTe/GaAs structure. The aims of study are experimental testing of a new sensitive null reflection method for detection of weak local birefringence and identification by this method of the main characteristics of residual mechanical stresses in local regions of the near-surface graded wide gap HgCdTe layer in the (013)HgCdTe/CdTe/ZnTe/GaAs. Analysis of the influence of crystalline perfection on the magnitude of residual mechanical stresses. Method. Registration of the characteristics of the second harmonic signal of the laser IR radiation reflected from the surface of the rotating sample under study, passed through a nonlinear crystal, exposed to synchronism for the polarization perpendicular to the polarization of the laser radiation. Main results. The new null method based on the excitation of second harmonic generation in a nonlinear LiJO3 crystal reflected from the surface of infrared laser radiation of a pulsed YAG:Nd laser with a wavelength of 1.064 µm has been developed. It is shown that such a sensitive method allows obtaining information on the anisotropy of the polarization of the reflected radiation due to residual deformation. The magnitude of the amplitude of the second harmonic signals maxima is obtained. Observations of fine structure in the maxima of the second harmonic signal indicate a complex structure of residual stresses associated with the presence of disoriented regions. Calculations of stresses in the near-surface region of the HgCdTe layer of composition x = 0.47, which amounted to (–20.5 ± 2) MPa, were carried out. The magnitude of the SHG signal for HgCdTe layers of higher crystalline perfection is about 1.5 times smaller than that for layers with reduced quality. Such stresses correspond to the value of the applied force of 2.3х10–3 N. Practical significance. The results of the residual stresses investigation with the help of the developed null method will serve as a basis for measurements of the residual stresses in the local areas of surface layers of various complex multilayer structures both by area and thickness with layer-by-layer etching, which will make it possible to determine the influence of layer growth parameters in the process and after epitaxy on the arising stresses and to identify critical parameters of the technological process.
mechanical stresses, second harmonic, polarization, generation, HgCdTe structure
Acknowledgements:OCIS codes: 160.6000, 190.2620, 190.4350
References:1. Sen’ko S.F., Zelenun V.A. Measurement of localized residual stresses in silicon semiconductor structures // Instruments and measurement methods. 2018. V. 9. № 3. P. 254–262. https://doi.org/10.21122/2220-9506-2018-9-3-254-262
2. Hattanda T., Takeda A. Direct measurement of internal strains in liquid phase epitaxial garnet film on Gadolinium Gallium Garnet (111) plate // Jpn. J. Appl. Phys. 1973. V. 12. № 7. P. 1104. http://doi.org/10.1143/JJAP.12.1104
3. Nagai H. Structure of vapor-deposited Gaxln1–xAs crystals // J. Appl. Phys. 1974. V. 45, P. 3789–3794. https://doi.org/10.1063/1.1663861
4. Kolesnikov A.V., Ilin A.S., Trukhanov E.M. et al. X-ray diffraction analysis of epitaxal film distortions on miscut substrates (001) // Bull. Russ. Acad. Sci. Phys. 2011. V. 75. 609–612. https://doi.org/10.3103/S1062873811050273
5. Loshkarev I.D., Vasilenko A.P., Trukhanov E.M., Kolesnikov A.V., Putyato M.A., Esin M.Yu., Petrushkov M.O. The structural state of epitaxial GaP films of different polarities grown on misoriented Si(001) substrates // Tech. Phys. Lett. 2017. V. 43. P. 213–215. https://doi.org/10.1134/S1063785017020225
6. Stupak M.F., Mikhailov N.N., Dvoretsky S.A., Makarov S.N., Yelesin A.G., Verhoglyad A.G. Highly sensitive express nonlinear optical diagnostics of the crystalline state of heterostructures such as sphalerite // Technical Physics. 2022. V. 67. № 14. P. 2290–2298. https://doi.org/10.21883/TP.2022.14.55233.34-21
7. Dvoretsky S.A., Stupak M.F., Mikhailov N.N., Makarov S.N., Elesin A.G., Verhoglyad A.G. Study of the crystalline state of MBE (013)HgCdTe/CdTe/ZnTe/GaAs heterostructure layers by the second harmonic generation method // Semiconductors. 2022. V. 56. № 8. P. 562–569. https://doi.org/0.21883/SC.2022.08.54114.31
8. Musher S.L., Stupak M.F., Syskin V.S. The use of phase matching as the null method for scanning bulk deformation fields in semiconductor materials // Quantum Electron. 1995. V. 26. № 8. P. 183-743-745z
9. Stupak M.F., Dvoretsky S.A., Mikhailov N.N., Makarov S.N., Elesin A.G. Local measurement of weak stresses on the surface of HgCdTe/CdTe/ZnTe/GaAs structures using the null method // JAP. 2023. V. 134. P. 185102. https://doi.org/10.1063/5.0167306
10. Matthews J.W. Defects associated with the accommodation of misfit between crystals // J. Vac. Sci. Technol. 1975. V. 12. P. 126–133. https://doi.org/10.1116/1.568741
11. Sidorov Y.G., Yakushev M.V., Varavin V.S. et al. Density of dislocations in CdHgTe heteroepitaxial structures on GaAs(013) and Si(013) substrates // Phys. Solid State. 2015. V. 57. P. 2151–2158. https://doi.org/10.1134/S1063783415110311
12. Berding M.A., Nix W.D., Rhiger D.R., Sen S., Sheer A. Critical thickness in the HgCdTe/CdZnTe system // J. Electron. Mater. 2000. V. 29. P. 676–679. https://doi.org/10.1007/s11664-000-0204-3
13. Kurilo I.V., Alekhin V.P., Rudyi I.O., Bulychev S.I., Osypyshin L.I. Mechanical properties of ZnTe, CdTe, CdHgTe and HgTe crystals from micromechanical investigation // Phys. Stat. Sol. (a). 1997. V. 163. P. 47–58.
14. Shugurov A.R., Panin A.V. Mechanisms of stress generation in thin films and coatings // Tech. Phys. 2020. V. 65. P. 1881–1904. https://doi.org/10.1134/S1063784220120257
15. Bolkhovityanov Yu.B., Pchelyakov O.P., Chikichev S.I. Silicon-germanium epilayers: physical fundamentals of growing strained and fully relaxed heterostructures // Phys. Sup. 2001 V. 44. № 9. P. 655–680. https://doi.org/10.1070/pu2001v044n07abeh000879
16. Skauli T., Haakenaasen R., Colin T. Thermal expansion behavior of CdHgTe epitaxial layers on CdZnTe substrates // J. Cryst. Growth. 2002. V. 241. P. 39–44.
17. Gergaud P., Jonchere A., Amstatt B., Baudry X., Brellier D., Ballet P. X-ray diffraction investigation of thermoelastic properties of HgCdTe/CdZnTe structures // J. Electr. Mat. 2012. V. 41. № 10. P. 2694–2699. https://doi.org/10.1007/s11664-012-2240-1
18. Yang V.K., Groenert M., Leitz C.W., Pitera A.J., Currie M.T., Fitzgerald E.A. Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates // J. Appl. Phys. 2003. V. 93. № 7. P. 3859–3865. https://doi.org/10.1063/1.1558963
19. Smirnov A.B. Residual stresses and piezoelectric properties of the HgCdTe – based compound heterostructures under the anisotropic deformation restriction // Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. V. 15. № 2. P. 170–175. PACS 72.40.+w, 77.65.Ly, 81.05.Dz
20. Sabinina I.V., Gutakovsky A.K., Sidorov Yu.G., Latyshev A.V. Nature of V-shaped defects in HgCdTe epilayers grown by molecular beam epitaxy // J. Crystal Growth. 2005. V. 274. P. 339–346. PACS: 61.30.Hn; 68.55.Ln; 68.37.Lp; 68.37.Ps
21. He L., Wu Y., Chen L., Wang S.L., Yu M.F., Qiao Y.M., Yang J.R., Li Y.J., Ding R.J., Zhang Q.Y. Composition control and surface defects of MBE-grown HgCdTe // J. Crystal Growth. 2001. V. 227–228. P. 677–682. PACS: 81.15.Ef; 81.40.Ef; 78.66.Hf