ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-05-25-32

УДК: 535-45

Ghost polarimetry with a spatial light modulator for creation of structured illumination patterns

For Russian citation (Opticheskii Zhurnal):

Шумигай В.С., Морева П.Е., Наседкин Б.А., Исмагилов А.О., Черных А.В., Гайдаш А.А., Козубов А.В., Киселев А.Д., Цыпкин А.Н. Фантомная поляриметрия с пространственным модулятором оптического излучения для формирования структурированных полей // Оптический журнал. 2024. Т. 91. № 5. С. 25–32. http://doi.org/10.17586/1023-5086-2024-91-05-25-32

 

Shumigai V.S., Moreva P.E., Nasedkin B.A., Ismagilov A.O., Chernykh A.V., Gaidash A.A., Kozubov A.V., Kiselev A.D., Tcypkin A.N. Ghost polarimetry with a spatial light modulator for creation of structured illumination patterns [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 5. P. 25–32. http://doi.org/10.17586/1023-5086-2024-91-05-25-32

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Spatial distribution of polarization properties of objects with linear dichroism. Aim of study. Creation of a ghost polarimetry scheme with a spatial light modulator to control the optical fields illuminating an object with linear dichroism. Method. Measurement by ghost polarimetry of the integral intensity of radiation passing through an object. Numerical calculation of intensity correlation functions for two sets of optical fields with orthogonal polarizations for further calculation of the azimuth of anisotropy modulus of an object with linear dichroism. Main results. A ghost polarimetry setup using a spatial light modulator was developed to monitor the characteristics of structured optical fields. Pictures of the polarization properties of three objects with linear dichroism were obtained. Practical significance. Ghost polarimetry has a lot of advantages over traditional methods of obtaining polarization patterns when studying objects under conditions of low radiation intensity, increased turbulence of the environment, as well as in spectral ranges for which traditional measuring instruments are expensive or unavailable. The introduction of a spatial light modulator into the ghost polarimetry scheme makes it possible to eliminate the need to register the
generated fields. This modification will allow to vary the characteristics of optical fields for specific objects in microbiological and medical research.

Keywords:

ghost polarimetry, structured optical field, azimuth of anisotropy, linear dichroism

Acknowledgements:

 this work was supported by the Ministry of Science and Higher Education of the Russian Federation (2019-0903)

OCIS codes: 110.5405, 110.3010, 110.1758

References:

1. Li X., Deng C., Chen M., et al. Ghost imaging for an axially moving target with an unknown constant speed // Photonics Research. 2015. V. 3. № 4. P. 153–157. https://doi.org/10.1364/PRJ.3.000153
2. Gong W., Zhao C., Yu H., et al. Three-dimensional ghost imaging lidar via sparsity constraint // Sci. Rep. 2016. V. 6. № 1. P. 1–6. https://doi.org/10.1038/ srep26133
3. Karmakar S., Meyers R.E., Shih Y. Noninvasive high resolving power entangled photon quantum microscope // J. Biomed. Opt. 2015. V. 20. № 1. P. 016008. https://doi.org/10.1117/1.JBO.20.1.016008
4. Huang W., Tan W., Qin H., et al. Edge detection based on ghost imaging through biological tissue // JOSA B. 2023. V. 40. № 7. P. 1696–1702. https://doi. org/10.1364/JOSAB.492919
5. Wu J., Xie Z., Liu Z., et al. Multiple-image encryption based on computational ghost imaging // Opt. Commun. 2016. V. 359. P. 38–43. https://doi.org/10.1016/j.optcom.2015.09.039
6. Kellock H., Setälä T., Friberg A.T., et al. Polarimetry by classical ghost diffraction // J. Opt. 2014. V. 16. № 5. P. 055702. https://doi.org/10.1088/2040-8978/16/5/055702
7. Магницкий С. А., Агапов Д.П., Беловолов И.А. и др. Фантомная поляриметрия в классическом и квантовом свете // Вестник Московского Университета. 2021. Т. 3. № 6. С. 12–25.  Magnitskiy S.A., Agapov D.P., Belovolov I.A., et al.
Ghost polarimetry in classical and quantum light // Moscow University Physics Bulletin. 2021. V. 76. № 6. P. 424–439. https://doi.org/10.3103/S0027134921060060
8. Morris P.A., Aspden R.S., Bell J.E.C., et al. Imaging with a small number of photons // Nature Commun. 2015. V. 6. № 1. P. 5913. https://doi.org/10.1038/ncomms6913
9. Karmakar S. На пути к 100% видности в безлинзовых системах получения фантомных изображений в солнечном свете [in English] // Оптический журнал. 2020. Т. 87. № 7. С. 24–30. http://doi.org/10.17586/1023-5086-2020-87-07-24-30
 Karmakar S. Towards 100% visibility in lensless ghost imaging with sunlight // J. Opt. Technol. 2020. V. 87. № 7. P. 405–409. https://doi.org/10.1364/JOT.87.000405
10. Meyers R.E., Deacon K.S., Shih Y. Turbulence-free ghost imaging // Appl. Phys. Lett. 2011. V. 98. № 11. P. 111115-1–111115-3. https://doi.org/10.1063/1.3567931
11. Shirai T., Kellock H., Setälä T., et al. Imaging through an aberrating medium with classical ghost diffraction // JOSA A. 2012. V. 29. № 7. P. 1288–1292. https://doi.org/10.1364/JOSAA.29.001288
12. Yu H., Lu R., Han S., et al. Fourier-transform ghost imaging with hard X rays // Phys. Rev. Lett. 2016. V. 117. № 11. P. 113901. https://doi.org/10.1103/PhysRevLett.117.113901
13. Pelliccia D., Rack A., Scheel M., et al. Experimental X-ray ghost imaging // Phys. Rev. Lett. 2016. V. 117. № 11. P. 113902. https://doi.org/10.1103/PhysRevLett.117.113902
14. Olivieri L., Gongora J.S.T., Peters L., et al. Hyperspectral terahertz microscopy via nonlinear ghost imaging // Optica. 2020. V. 7. № 2. P. 186–191. https://doi.org/10.1364/OPTICA.381035
15. Ghosh N., Vitkin I.A. Tissue polarimetry: Concepts, challenges, applications, and outlook // J. Biomed. Opt.
2011. V. 16. № 11. P. 110801–110801-29. https://doi.org/ 10.1117/1.3652896
16. Weinreb R.N., Zangwill L., Berry C.C., et al. Detection of glaucoma with scanning laser polarimetry // Archives of Ophthalmology. 1998. V. 116. № 12. P. 1583–1589. https://doi.org/10.1001/archopht.116. 12.1583
17. Li X., Han Y., Wang H., et al. Polarimetric imaging through scattering media: A review // Frontiers in Physics. 2022. V. 10. P. 815296. https://doi.org/10.3389/fphy.2022.815296
18. Ghosh N., Banerjee A., Soni J. Turbid medium polarimetry in biomedical imaging and diagnosis // The European Phys. J. — Appl. Phys. 2011. V. 54. № 3. P. 30001. https://doi.org/10.1051/epjap/2011110017
19. Huang W., Tan W., Qin H., et al. Edge detection based on ghost imaging through biological tissue // JOSA B. 2023. V. 40. № 7. P. 1696–1702. https://doi.org/10.1364/JOSAB.492919
20. Gibson G.M., Johnson S.D., Padgett M.J. Singlepixel imaging 12 years on: A review // Opt. Exp. 2020. V. 28. № 19. P. 28190–28208. https://doi.org/10.1364/OE.403195
21. Bromberg Y., Katz O., Silberberg Y. Ghost imaging with a single detector // Phys. Rev. A. 2009. V. 79. № 5. P. 053840. https://doi.org/10.1103/PhysRevA.79. 053840
22. Gerchberg R.W. A practical algorithm for the determination of phase from image and diffraction plane pictures // Optik. 1972. V. 35. P. 237–246.
23. Magnitskiy S., Agapov D., Chirkin A. Ghost polarimetry with unpolarized pseudo-thermal light // Opt. Lett. 2020. V. 45. № 13. P. 3641–3644. https://doi. org/10.1364/OL.387234
24. Титаренко М.А., Малашин Р.О. Исследование способностей нейронных сетей к извлечению и использованию семантической информации при обучении восстановлению зашумлённых изображений // Оптический журнал. 2022. Т. 89. № 2. С. 25–35. http:// doi.org/10.17586/1023-5086-2022-89-02-25-35  Titarenko M.A., Malashin R.O. Study of the ability of
neural networks to extract and use semantic information when they are trained to reconstruct noisy images // J. Opt. Technol. 2022. V. 89. № 2. P. 81–88. https:// doi.org/10.1364/JOT.89.000081