ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-07-121-131

УДК: 57.087

Analysis of data from biomedical multisensor optical systems

For Russian citation (Opticheskii Zhurnal):

Мазинг М.С., Зайцева А.Ю., Новиков Л.В. Анализ данных медико-биологических мультисенсорных оптических систем // Оптический журнал. 2024. Т. 91. № 7. С. 121–131. http://doi.org/10.17586/1023-5086-2024-91-07-121-131

 

Mazing M.S., Zaitseva A.Yu., Novikov L.V. Analysis of data from medical and biological multisensor optical systems [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 7. P. 121–131. http://doi.org/10.17586/1023-5086-2024-91-07-121-131

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Multisensor optical systems intended for biomedical research, and the methodology for applying the multisensor approach in optical biomedical diagnostics. The aim of study. Development and detailed study of a multichannel optical system designed for collecting, transmitting and subsequent analysis of diagnostic information, as well as the development of an effective algorithm for preprocessing a large volume of optical signals describing the state of a biological object, using data mining methods. Method. Methods for mining multidimensional data as applied to a multisensory approach to ranking optical spectroscopy signals. Main results. A small-sized optical multisensor system for biomedical diagnostics is presented, which includes an array of 18 photodiode sensitive elements with selective sensitivity to the visible and infrared ranges of optical radiation at wavelengths from 410 to 940 nm. The stages of analysis of multidimensional information received from the system are described, in which the use of the principal component method and cluster analysis algorithms is proposed. An experimental study was conducted with the participation of subjects, which confirmed the effectiveness of the proposed approaches. Using data mining methods, the results of ranking the subjects were visualized, which made it possible to identify hidden patterns in the functional state of microcirculatory tissue systems according to the readings of an array of optical sensors. Practical significance. The results of the research can be used in the design of automated complexes based on optical multisensor systems to solve problems of identification and analysis of the functional state of complex multicomponent biological tissues and fluids of the human body.

Keywords:

multisensor optical system, optical spectroscopy, data mining, principal component analysis

Acknowledgements:

this work was supported by the Russian Science Foundation, project № 24-21-00404.

OCIS codes: 170.3880, 170.1470, 170.4580

References:

1. Дунаев А.В. Мультимодальная оптическая диагностика микроциркуляторно-тканевых систем организма человека: монография. Старый Оскол: ТНТ, 2022. 440 с.

    Dunaev A.V. Multimodal optical diagnostics of microcirculatory tissue systems of the human body: Monograph [in Russian]. Stary Oskol: TNT, 2022. 440 p.

2.  Дунаев А.В. Метод и устройство оценки функционального состояния микроциркуляторно-тканевых систем организма человека на основе мультипараметрической оптической диагностики // Известия вузов России. Радиоэлектроника. 2022. Т. 23. № 4. С. 77–91.

    Dunaev A.V. Method and device for assessing the functional state of microcirculatory tissue systems of the human body based on multiparametric optical diagnostics [in Russian] // News of Higher Educational Institutions of Russia. Radioelectronics. 2022. V. 23. № 4. P. 77–91.

3.  Pirzada M., Altintas Z. Recent progress in optical sensors for biomedical diagnostics // Micromachines. 2020. V. 11. № 4. P. 356. https://doi.org/10.3390/mi11040356

4.  Tian L., Hunt B., Bell M., et al. Deep learning in biomedical optics // Lasers in Surgery and Medicine. 2021. V. 53. № 6. P. 748–775. https://doi.org/10.1002/lsm.23414

5.  Богомолов А.Ю. Оптические мультисенсорные системы в аналитической спектроскопии // Журнал аналитической химии. 2022. Т. 77. № 3. С. 227–247.

      Bogomolov A.Yu. Optical multisensor systems in analytical spectroscopy [in Russian] // J. Analytical Chemistry. 2022. V. 77. № 3. P. 227–247.

6.   Ali J., Cody J., Maldonado Y., et al. Near-infrared spectroscopy (NIRS) for cerebral and tissue oximetry: Analysis of evolving applications // J. Cardiothoracic and Vascular Anesthesia. 2022. V. 36. № 8. P. 2758–2766. https://doi.org/10.1053/j.jvca.2021.07.015

7.   Scholkmann F., Scherer-Vrana A. Comparison of two NIRS tissue oximeters (moxy and nimo) for non-invasive assessment of muscle oxygenation and perfusion // Oxygen Transport to Tissue XLI. 2020. P. 253–259. https://doi.org/10.1007/978-3-030-34461-0_32

8.   Рогаткин Д.А., Лапитан Д.Г., Рогаткин Д.А. Функциональные исследования системы микроциркуляции крови методом лазерной допплеровской флоуметрии в клинической медицине: проблемы и перспективы // Альманах клинической медицины. 2016. Т. 44. № 2. С. 249–259.

     Rogatkin D.A., Lapitan D.G., Rogatkin D.A. Functional studies of the blood microcirculation system using laser Doppler flowmetry in clinical medicine: Problems and prospects [in Russian] // Almanac of Clinical Medicine. 2016. V. 44. № 2. P. 249–259.

9.  Рогаткин Д.А., Лапитан Д.Г., Колбас Ю.Ю. и др. Индивидуальная вариабельность параметров микроциркуляции крови и проблемы функциональной диагностики системы микроциркуляции // Функциональная диагностика. 2012. Т. 4. С. 9–24.

     Rogatkin D.A., Lapitan D.G., Kolbas Yu.Yu., et al. Individual variability of blood microcirculation parameters and problems of functional diagnostics of the microcirculation system [in Russian] // Functional Diagnostics. 2012. V. 4. P. 9–24.

10. de Keijzer I.N., Massari D., Sahinovic M., et al. What is new in microcirculation and tissue oxygenation monitoring? // J. Clinical Monitoring and Computing. 2022. V. 36. № 2. P. 291–299. https://doi.org/10.1007/s10877-022-00837-x

11.  Cornelis N., Chatzinikolaou P., Buys R., et al. The use of near infrared spectroscopy to evaluate the effect of exercise on peripheral muscle oxygenation in patients with lower extremity artery disease: a systematic review // Europ. J. Vascular and Endovascular Surgery. 2021. V. 61. № 5. P. 837–847. https://doi.org/10.1016/j.ejvs.2021.02.008

12. Heise H.M. Medical applications of NIR spectroscopy // Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications / 2021. P. 437–473.

13.  Леонов В.Е. Программное обеспечение для обработки данных мультисенсорной системы типа «электронный нос» // Информационные технологии в науке и производстве. 2018. С. 46–51.

      Leonov V.E. Software for data processing of a multisensory system such as “electronic nose” [in Russian] // Information Technol. in Sci. and Production. 2018. P. 46–51.

14.  Власов Ю.Г., Легин А.В., Рудницкая А.М. Мультисенсорные системы типа электронный язык — новые возможности создания и применения химических сенсоров // Успехи химии. 2006. Т. 75. № 2. С. 141–150.

       Vlasov Yu.G., Legin A.V., Rudnitskaya A.M. Multisensory systems of the electronic tongue type — new possibilities for the creation and application of chemical sensors [in Russian] // Advances in Chem. 2006. V. 75. № 2. P. 141–150.

15.  Kherif F., Latypova A. Principal component analysis. Machine Learning — Academic Press, 2020. P. 209–225. https://doi.org/10.1016/B978-0-12-815739-8.00012-2

16.  Hasan B.M., Abdulazeez A.M. A review of principal component analysis algorithm for dimensionality reduction // J. Soft Computing and Data Mining. 2021. V. 2. № 1. P. 20–30.

17.  Maćkiewicz A., Ratajczak W. Principal components analysis (PCA) // Computers & Geosciences. 1993. V. 19. № 3. P. 303–342.

18. Родионова О.Е. Хемометрический подход к исследованию больших массивов химических данных // Российский химический журнал. 2006. Т. 50. № 2. С. 128–144.

      Rodionova O.E. Chemometric approach to the study of large amounts of chemical data [in Russian] // Russian Chemical J. 2006. V. 50. № 2. P. 128–144.

19.  Рогаткин Д.А., Быченков О.А., Поляков П.Ю. Неинвазивная спектрофотометрия в современной радиологии: вопросы точности и информативности результатов измерений // Альманах клинической медицины. 2008. № 17–1. С. 83–87.

      Rogatkin D.A., Bychenkov O.A., Polyakov P.Yu. Non-invasive spectrophotometry in modern radiology: Issues of accuracy and informativeness of measurement results [in Russian] // Almanac of Clinical Medicine. 2008. № 17–1. P. 83–87.

20. Афанасьев А.И., Рогаткин Д.А., Сергиенко А.А. и др. Новое поколение приборов неинвазивной спектрофотометрии: оптический тканевый оксиметр и анализатор объемного кровенаполнения мягких биологических тканей «Спектротест» // Доктор. ру. 2007. № 4. С. 45–47.

Afanasyev A.I., Rogatkin D.A., Sergienko A.A., et al. New generation of non-invasive spectrophotometry devices: Optical tissue oximeter and analyzer of volumetric blood filling of soft biological tissues “Spectrotest” [in Russian] // Dr. RU. 2007. № 4. P. 45–47.

21. Рогаткин Д.А. Физические основы оптической оксиметрии // Медицинская физика. 2012. № 2. С. 97–114.

Rogatkin D.A. Physical foundations of optical oximetry [in Russian] // Medical Phys. 2012. № 2. P. 97–114.