ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-08-89-98

УДК: 612.821,572.57.02, 535.2

Using the virtual reality technologies to assess egocentric and allocentric spatial representations in working memory

For Russian citation (Opticheskii Zhurnal):

Савельева О.А., Меньшикова Г.Я., Величковский Б.Б., Бугрий Г.С. Применение технологий виртуальной реальности для оценки эгоцентрических и аллоцентрических пространственных репрезентаций в рабочей памяти // Оптический журнал. 2024. Т. 91. № 8. С. 89–98. http://doi.org/10.17586/1023-5086-2024-91-08-89-98

 

 Saveleva O.A., Menshikova G.Ya., Velichkovsky B.B., Bugriy G.S. Using the virtual reality technologies to assess egocentric and allocentric spatial representations in working memory [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 8. P. 89–98. http://doi.org/10.17586/1023-5086-2024-91-08-89-98

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. The paper proposes the method for assessing the accuracy of egocentric and allocentric spatial representations, which serve as the basis for describing the surrounding space. The accuracy of spatial representations depends on many factors: personal, emotional, cognitive, environmental and others. The aim of the study was to develop and test a methodology for assessing the accuracy of the egocentric and allocentric representations in working memory. Research method is using immersive CAVE virtual reality technologies. The results showed that in working memory the representation space of information depends on the task being solved and the individual characteristics of the human operator. Conclusions. The theoretical foundation for space of visual information representation by the operator is the coordinated work of the visual and spatial cognitive systems, encoding the metric, depth and topological parameters of the localization of objects in the surrounding space. Data variability is considered as a practical basis for controlling stress reactions of various levels in virtual reality, depending on the complexity of the cognitive task being solved and personal characteristics (cognitive style, personality traits, development of spatial abilities, etc.). The results are applicable in robotics, healthcare and related fields to improve procedures for differential diagnosis, testing, correction of spatial disorders, etc.

Keywords:

space of information representation by the operator, egocentric and allocentric spatial representations, working memory, topology, metric, depth, virtual reality

Acknowledgements:

the study was supported by the Russian Scientific Found, Project № 23-78-10090. The work was performed on the equipment of Lomonosov MSU.

OCIS codes: 330.4300, 330.4270, 330.5020

References:

1. Шелепин Ю.Е., Луцив В.Р., Коротаев В.В. Оптические технологии и зрительная картина мира: иконика и нейроиконика // Оптический журнал. 2022. Т. 89. № 8. С. 3–7.https://doi.org/10.17586/1023-5086-2022-89-08-03-07  Shelepin Yu.E., Lutsiv V.R., Korotaev V.V. Optical technologies and the visual picture of the world: iconics and neuroiconics // Journal of Optical Technology. 2022. V. 8. № 8. P. 434–436. •https://doi.org/10.1364/JOT.89.000434
2. Шелепин Ю.Е., Хараузов А.К., Жукова О.В., Пронин С.В., Куприянов М.С., Цветков О.В. Маскировка и обнаружение скрытых сигналов в динамических изображениях // Оптический журнал. 2020. Т. 87. № 10. С. 89–102. https://doi.org/10.17586/1023-5086-2020-87-10-89-102 Shelepin Yu.E., Kharauzov A.K., Zhukova O.V., Pronin S.V., Kupriyanov M.S., Tsvetkov O.V. Masking and detection of hidden signals in dynamic images // Journal of Optical Technology. 2020. V 87. № 10. P. 624–632.
3. Ярбус А.Л. Движения глаз при восприятии сложных объектов // Роль движений глаз в процессе зрения. М.: Наука, 1965. С. 125–148.
4. Ziemer J.L. The effects of chronic stress on allocentric versus egocentric spatial memory // Doctoral thesis. Canada, Regina, Saskatchewan: The University of Regina, 2023. 85 р.
5. Shepard R.N. Form, formation, and transformation of internal representations // Information processing and cognition. Routledge. 1975. С. 87–122.
6. Малахова Е.Ю. Пространство описания зрительной сцены в искусственных и биологических нейронных сетях // Оптический журнал. 2020. Т. 87. № 10. С. 50–58.  Malakhova E.Yu. Information representation space in artificial and biological neural networks // Journal of Optical Technology. 2020. V. 87. № 10. P. 598–603. https://doi.org/10.1364/JOT.87.000598
7. Colombo D., Serino S., Tuena C., Pedroli E., Dakanalis A., Cipresso P., Riva G. Egocentric and allocentric spatial reference frames in aging: A systematic review // Neuroscience and Biobehavioral Reviews. 2017. V. 80. P. 605–621. https://doi.org/ 10.1016/j.neubiorev. 2017.07.012
8. Derbie A.Y., Bolton K.H., Chau Clive H., Wong Y.et al. Common and distinct neural trends of allocentric and egocentric spatial coding: An ALE meta-analysis // European Journal of Neuroscience. 2021. V. 53(11). P. 3672–3687. https://doi.org/10.1111/ejn.15240
9. Klatzky R.L. Allocentric and egocentric spatial representations: definitions, distinctions and interconnections // Spat. Cogn. 1998. V. 1404. P. 1–17. https://doi.org/10.1007/3-540-69342-4_1
10. Wang C., Chen X., Knierim J.J. Egocentric and allocentric representations of space in the rodent brain // Current opinion in neurobiology. 2020. V. 60. С. 12–20. https://doi.org/ 10.1016/j.conb.2019.11.005

11. Bird C.M., Burgess N. The hippocampus and memory: insights from spatial processing // Nature Reviews Neuroscience. 2008. 9. 182–194. https://doi.org/10.1038/nrn2335
12. Danjo T. Allocentric representations of space in the hippocampus // Neuroscience research. 2020. V. 153. P. 1–7. https://doi.org/10.1016/j.neures.2019.06.002
13. Tuena C., Mancuso V., Stramba-Badiale C. et al. Egocentric and allocentric spatial memory in mild cognitive impairment with real-world and virtual navigation tasks: a systematic review // Journal of Alzheimer's Disease. 2021. V. 79(1). P. 95–116. https:// doi.org/10.3233/JAD-201017
14. Kuipers B. A hierarchy of qualitative representations for space // Spatial cognition: An interdisciplinary approach to representing and processing spatial knowledge. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. P. 337–350.
15. Hørlyck L.D., Jespersen A.E., King J.A. et al. Impaired allocentric spatial memory in patients with affective disorders // Journal of Psychiatric Research. 2022. V. 150. P. 153–159. https://doi.org/ 10.1016/j.jpsychires.2022.01.042
16. Van der Kolk B. The body keeps the score: Brain, mind, and body in the healing of trauma. NY: Penguin, 2014. 356 p.
17. Fernandez-Baizan C., Arias J.L., Mendez M. Spatial memory assessment reveals age-related differences in egocentric and allocentric memory performance // Behavioural Brain Research. 2020. V. 388. P. 112646. https://doi.org/ 10.1016/j.bbr.2020.112646
18. Wen W., Ishikaw T., Sato T. Individual differences in the encoding processes of egocentric and allocentric survey knowledge // Cognitive Science. 2013. V. 37. P. 176–192. https://doi.org/10.1111/cogs.12005
19. Baddeley A. Working memory: theories, models, and controversies // Annual review of psychology. 2012. V. 63. P. 1–29. https://doi.org/10.1146/annurevpsych-120710-100422
20. Iachini T., Ruotolo F., Iavarone A.et al. From aMCI to AD: the role of visuo-spatial memory span and executive functions in egocentric and allocentric spatial impairments // Brain Sciences. 2021. V. 11. № 11. P. 1536. https://doi.org/10.3390/brainsci11111536
21. Ishikawa T. Individual differences and skill training in cognitive mapping: How and why people differ // Topics in Cognitive Science. 2023. V. 15(1). P. 163–186. https://doi.org/10.1111/tops.12605
22. Luck S.J., Vogel E.K. The capacity of visual working memory for features and conjunctions // Nature. 1997. V. 390(6657). P. 279. https://doi.org/10.1038/36846
23. Miller G.A. The magical number of seven, plus or minus two: Some limit on our capacity for processing information // The Psychological Review. 1956. V. 63. P. 81–97.
24. Wagoner B. Bartlett’s concept of schema in reconstruction // Theory & Psychology. 2013. V. 23(5). P. 553–575. https://doi.org/10.1177/0959354313500166
25. Бэддели А., Айзенк М., Андерсон М. Память. СПб.: Питер, 2011. 560 c.
26. Conrad R., Hull A.J. Information, acoustic confusion and memory span // British Journal of Psychology. 1964. V. 55. P. 429–432. https://doi.org/10.1111/j.2044-8295.1964.tb00928.x
27. Atkinson R.C., Shiffrin R.M. Human memory: A proposed system and its control processes // Psychology of learning and motivation. 1968. V. 2. P. 89–195. https:// doi.org/10.1016/S0079-7421(08)60422-3