DOI: 10.17586/1023-5086-2025-92-11-23-33
УДК: 535.15
Narrow-linewidth broadly-tunable mid-infrared parametric source based on zinc germanium diphosphide crystals
Еранов И.Д., Антипов О.Л., Добрынин А.А., Гетмановский Ю.А., Шарков В.В. Узкополосный широкоперестраиваемый параметрический источник света среднего инфракрасного диапазона на основе кристаллов дифосфида цинка-германия // Оптический журнал. 2025. Т. 92. № 11. С. 23–33. http://doi.org/10.17586/1023-5086-2025-92-11-23-33
Eranov I.D., Antipov O.L., Dobrynin A.A., Getmanovskiy Yu.A., Sharkov V.V. Narrow-linewidth broadly-tunable mid-infrared parametric source based on zinc germanium diphosphide crystals [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 11. P. 23–33. http://doi.org/10.17586/1023-5086-2025-92-11-23-33
Subject of study. A narrow-linewidth widely tunable parametric mid-infrared light source, consisting of a single-resonant optical parametric oscillator and an optical parametric amplifier based on zinc germanium diphosphide nonlinear crystals, pumped by a repetitively pulsed Ho3+:YAG laser. Aim of study. The principle of creating a broadly-tunable repetitively-pulsed mid- infrared radiation source with a narrow linewidth and high pulse energy. Method. Development of the narrow-linewidth operation was formed by using an intracavity Fabry–Perot etalon — a Si wafer with thickness of 33 or 56 µm. The broadly wavelength tuning was realized by changing the temperature of the etalon and the nonlinear crystal. The parametric amplifier provided an increase in pulse energy. Main results. Narrow-linewidth operation of the parametric source (with a signal linewidth of 3–8 nm) was tuned at 3860–4130 and 4210–4565 nm for the signal and idler, respectively. The energy in the pulses with a repetition rate of 10–50 Hz reached 1.7 mJ for the narrow-linewidth radiation and 4.8 mJ for broadband operation (or frequency combs). Practical significance. This powerful narrow-line radiation, tunable in the range of 3.8–4.6 µm, has potential applications in remote environmental monitoring, particularly for detecting greenhouse gases such as CO2 and CO, wireless optical communication or in selective interactions with materials such as silicon and diamond.
parametric light generators, nonlinear optical crystal, mid-infrared range, Fabry–Pe€rot etalon, narrow spectral generation line, synchronism conditions, thermo-optical coefficient of silicon, wavelength tuning, temperature dependence of the crystal refractive index
Acknowledgements:the research was supported by the Russian Science Foundation (project № 22-12-20035), and Nizhniy Novgorod Ministry of Science and Education (contract 316-06-16-24/23, signed on 20.04.23).
OCIS codes: 190.4970, 140.3600, 300.3700, 160.6030
References:- Vodopyanov K. L. Laser‐based mid‐infrared sources and applications. USA: Wiley, 2020, 287 p.
- Schunemann P.G., Zawilski K.T., Pomeranz L.A., et al. Advances in nonlinear optical crystals for mid-infrared coherent sources// JOSA B. 2013. V. 33. № 11. P. D36–D43. https://doi.org/10.1364/JOSAB.33.000D36
- Liu G., Shuyi Mi, Ke S.M., et al. 161 W middle infrared ZnGeP2 MOPA system pumped by 300 W-class Ho:YAG MOPA system // Opt. Lett. 2021. V. 46. № 1. P. 82–85. https://doi.org/10.1364/OL.413755
- Budni P.A., Pomeranz L.A., Lemons M.L., et al. Efficient mid-infrared laser using 1.9-µm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators // JOSA B. 2000. V. 17. P. 723–728. https://doi.org/10.1364/JOSAB.17.000723
- Захаров Н.Г., Антипов О.Л., Шарков В.В. и др. Эффективная генерация на длине волны 2,1 мкм в лазере на кристалле Ho:YAG с накачкой излучением Tm:YLE-лазера // Квант. электрон. 2010. T. 40. № 2. C. 98–100. https://doi.org/10.1070/QE2010v040n02ABEH014258
Zakharov N.G., Antipov O.L., Sharkov V.V., et al. Efficient lasing at 2.1 μm in a Ho:YAG laser pumped by a Tm:YLF laser // Quant. Electron. 2010. V. 40. Iss. 2. P. 98–100. https://doi.org/10.1070/QE2010v040n02ABEH014258
- Antipov O.L., Kositsyn R.I., Eranov I.D. 36 W Q-switched Ho:YAG laser at 2097 nm pumped by a Tm fiber laser: Evaluation of different Ho3+ doping concentrations // Laser Phys. Lett. 2017. V. 14. № 1. P. 015002 (7 ppt). http://dx.doi.org/10.1088/1612-202X/14/1/015002
- Антипов О.Л., Еранов И.Д., Косицын Р.И. Параметрические генераторы света среднего ИК диапазона мощностью 10 Вт на основе элементов ZnGeP2, накачиваемых излучением Ho:YAG-лазера с волоконно-лазерной накачкой. Экспериментальное и численное исследование // Квант. электрон. 2017. Т. 47. № 7. С. 601–606. https://doi.org/ 10.1070/QEL16366
Antipov O.L., Eranov I.D., Kositsyn R.I. 10-W mid-IR optical parametric oscillators based on ZnGeP2 elements pumped by a fibre-laser-pumped Ho:YAG laser. Experimental and numerical study // Quant. Electron. 2017. V. 47. Iss. 7. P. 601–606. https://doi.org/ 10.1070/QEL16366
- Zawilski K.T., Setzler S.D., Schunemann P.G., et al. Increasing the laser-induced damage threshold of single-crystal ZnGeP2 // JOSA B. 2006. V. 23. P. 2310–2316. https://doi.org/10.1364/JOSAB.23.002310
- Юдин Н.Н., Антипов О.Л., Грибенюков А.И. и др. Влияние технологии постростовой обработки и параметров лазерного излучения на длинах волн 2091 и 1064 нм на порог оптического пробоя монокристалла ZnGeP2 // Квант. электрон. 2021. Т. 51. № 4. С. 306–316. https://doi.org/10.1070/QEL17389
Yudin N.N., Antipov O.L., Gribenyukov A.I., et al. Effect of postgrowth processing technology and laser radiation parameters at wavelengths of 2091 and 1064 nm on the laser-induced damage threshold in ZnGeP2 single crystal // Quant. Electron. 2021. V. 51. Iss. 4. P. 306–316. https://doi.org/ 10.1070/QEL17389
- Yudin N., Dyomin V., Gribenyukov A., et al. Physical and technological aspects of laser-induced damage of ZGP single crystals under periodically pulsed laser irradiation at 2.1 μm // Photonics. 2023. V. 10. Iss. 12. P. 1364. https://doi.org/10.3390/photonics10121364
- Vodopyanov K.L., Ganikhanov F., Maffetone J.P., et al. ZnGeP2 optical parametric oscillator with 3.8–12.4-µm tuneability // Opt. Lett. 2000. V. 25. P. 841. https://doi.org/10.1364/OL.25.000841
- Zakel А., Wagner G.J., Alford W.J., et al. High-power, rapidly-tunable ZnGeP2 intracavity optical parametric oscillator // OSA/CLEO. 2005. V. CThY5. http://dx.doi.org/10.1109/CLEO.2005.202338
- Das S. Optical parametric oscillator: Status of tunable radiation in mid-IR to IR spectral range based on ZnGeP2 crystal pumped by solid state lasers // Opt. and Quant. Electron. 2019. V. 51. P. 70. https://doi.org/10.1007/s11082-019-1782-3
- Lv Z., Shen Y., Wen Y., et al. High power widely tunable mid-IR (5–7.2 μm) ZnGeP2 optical parametric oscillator pumped by a 2.09 μm laser // Infrared Phys. & Technol. 2023. V. 134. P. 104879. https://doi.org/10.1016/j.infrared.2023.104879
- Власов Д.В., Юдин Н.Н., Антипов О.Л. и др. Перестраиваемый в диапазоне длин волн 3.3−4.2 мкм параметрический генератор света на базе монокристалла ZnGeP2 со спектральной шириной генерируемого излучения 1 см–1 // Известия вузов. Физика. 2023. T. 66. № 10. C. 13–22. https://doi.org/10.17223/00213411/66/10/2
Vlasov D.V., Yudin N.N., Antipov O.L., et al. Tunable in the wavelength range of 3.3−4.2 μm parametric light generator based on a ZnGeP2 single crystal with a spectral width of generated radiation of 1 cm–1 // Bulletin of Universities. Physics. 2023. V. 66. № 10. P. 13–22. https://doi.org/10.17223/00213411/66/10/2
- Захаров Н.Г., Антипов О.Л., Савикин А.П. и др. Эффективная генерация на длине волны 1908 нм в лазере на кристалле Tm:YLF с диодной накачкой // Квант. электрон. 2009. Т. 39. № 5. С. 410–4414. https://doi.org/10.1070/QE2009v039n05ABEH013967
- Zakharov N.G., Antipov O.L., Savikin A.P., et al. Efficient generation at a wavelength of 1908 nm in a diode-pumped Tm:YLF crystal laser // Quant. Electron. 2009. V. 39. № 5. P. 410–4414. https://doi.org/10.1070/QE2009v039n05ABEH013967
- Электронный ресурс: https://rezonator.orion-project.org (дата обращения 14.08.2025).
Electronic resource: https://rezonator.orion-project.org (accessed by 08/14/2025).
- Budni P.A., Ibach C.R., Setzler S.D., et al. 50-mJ, Q-switched, 2.09-mm holmium laser resonantly pumped by a diode-pumped 1.9-mm thulium laser // Opt. Lett. 2003. V. 28. № 12. P. 1016. https://doi.org/10.1364/OL.28.001016
- ГОСТ Р ИСО/ТО 11146-3— 2008. Лазеры и лазерные установки (системы): Методы измерений ширин, углов расходимости и коэффициентов распространения лазерных пучков — Часть 3: Собственная и геометрическая классификация лазерных пучков, специфика их распространения и методики измерений // Москва: Стандартинформ, 2010. 14 c.
GOST R ISO/TR 11146-3: 2008: Lasers and laser-related equipment — test methods for laser beam widths, divergence angles and beam propagation ratios — Part 3: Intrinsic and geometrical laser beam classification, propagation and details of test methods. Moscow: Interstandard (Russia), 2010. 14 p.
- Электронный ресурс URL: https://fc.gpi.ru (база данных нелинейно-оптических кристаллов).
Electronic resource URL: https://fc.gpi.ru (datebase on the nonlinear crystals).
- Frey B.J., Leviton D.B., Madison T.J. Temperature-dependent refractive index of silicon and germanium // e-print arXiv:physics/0606168v1. https://doi.org/10.48550/arXiv.physics/0606168
- Gordon I.E., Rothman L.S., Hargreaves R.J., et al. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 277. P. 107949. http://dx.doi.org/10.1016/j.jqsrt.2021.107949
- Collins A.T. Intrinsic and extrinsic absorption and luminescence in diamond // Physica B: Condensed Matter. 1993. V. 185. P. 284–296. https://doi.org/10.1016/0921-4526(93)90250-A
ru