DOI: 10.17586/1023-5086-2025-92-05-50-56
УДК: 535.37
Assessment of the effect of a constant magnetic field on the luminescence of gallium phosphide crystals
Full text on elibrary.ru
Скворцова А.А., Волкова Л.В., Каленков С.Г., Скворцов А.А. Оценка влияния постоянного магнитного поля на люминесценцию кристаллов фосфида галлия // Оптический журнал. 2025. Т. 92. № 5. С. 50–56. http://doi.org/10.17586/1023-5086-2025-92-05-50-56
Skvortsova A.A., Volkova L.V., Kalenkov S.G., Skvortsov A.A. Assessment of the effect of a constant magnetic field on the luminescence of gallium phosphide crystals [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 5. P. 50–56. http://doi.org/10.17586/1023-5086-2025-92-05-50-56
The subject of the study. Magnetically stimulated photoluminescence of single crystals of gallium phosphide doped with zinc. The purpose of the work. Determination of the dependence of the luminescence intensity of gallium phosphide single crystals, as well as determination of the characteristic relaxation times after preliminary exposure of samples in a permanent magnetic field to solve the problem of magnetically stimulated control of the gallium phosphide single crystals optical properties. Method. Experimental studies of the luminescence spectra of gallium phosphide at room temperature were performed using an experimental setup containing a spectrophotometer and an exciting laser with a wavelength of 405 nm. The magnetic exposure of the samples was carried out in a constant magnetic field between the poles of neodymium magnets with а magnetic induction of less than 0,8 T. The main results. The effect of a constant magnetic field on the luminescence spectra of gallium phosphide crystals has been experimentally established. Preliminary exposure of a sample of gallium phosphide doped with zinc in a constant magnetic field (greater than 0,5 T) leads to an increase in the luminescence intensity at a wavelength of 565 nm. The relaxation of the maximum intensity of the fluorescence band is 180 minutes. Practical significance. The results obtained in the study of the effect of a permanent mag netic field on the spectral characteristics of gallium phosphide crystals will contribute to the deve lopment of effective methods for modifying the electronic properties of a gallium phosphide monolayer, which will allow the creation of new multifunctional materials for optoelectronic applications.
gallium phosphide, permanent magnetic field, luminescence, relaxation, singlet and triplet states, intercombination conversion
Acknowledgements:the work was supported within the framework of the state assignment of the Ministry of Education and Science of the Russian Federation (project № FZRR-2023-0009) for the Moscow Polytechnic University
OCIS codes: 160.4760, 160.2540, 260.3800
References:1. da Silva Barboza E., Cruz K.L.M., Ferreira R.S., et al. Stability and optoelectronic properties of two-dimensional gallium phosphide // ACS Omega. 2024. V. 9. № 33. P. 35666. https://doi.org/10.1021/acsomega. 4c03861
2. Choi Y., Choi Ch., Bae J., et al. Synthesis of gallium phosphide quantum dots with high photoluminescence quantum yield and their application as color converters for LEDs // J. Industrial and Eng. Chem. 2023. V. 123. P. 509–516. https://doi.org/10.1016/j.jiec.2023.04.005
3. Aparna A.R., Brahmajirao V., Karthikeyan T.V. Review on synthesis and characterization of gallium phosphide // Proc. Mater. Sci. 2014. V. 6. P. 1650–1657. https://doi.org/10.1016/j.mspro.2014.07.150
4. Dvoretckaia L.N., Fedorov V.V., Pavlov A.V., et al. Selective area epitaxy of gallium phosphide-based nanostructures on microsphere lithography-patterned Si wafers for visible light optoelectronics // Mater. Res. Bulletin. 2025. V. 182. P. 113126 https://doi.org/10.1016/j.materresbull.2024.113126
5. Assali A., Fares K., Zou Q., et al. Optical characteristics of dilute gallium phosphide bismide: Promising material for near-infra photonic device applications // Phys. Lett. A. 2020. V. 384. № 6. P. 126147. https://doi.org/10.1016/j.physleta.2019.126147
6. Xue P., Wang Y., Tikhonov E. Exploring the stable structures and photovoltaic properties of an ideal pseudo-binary alloy: Indium gallium phosphide // Computational Mater. Sci. 2022. V. 209. P. 111351. https://doi.org/10.1016/j.commatsci.2022.111351
7. Belacel R., Djoudi L., Merabet M., et al. Investigation on structural, electronic, optical and elastic properties of thallium phosphide and gallium phosphide binary compounds and their ternary alloys and superlattices // Computational Condensed Matter. 2018. V. 17. P. e00344. https://doi.org/10.1016/j.cocom.2018.e00344
8. Vu T.V., Guerrero-Sanchez J., Hoat D.M. Engineering the half-metallic and magnetic semiconductor natures in gallium phosphide monolayer towards spintronic applications // Chem. Phys. 2024. V. 582. P. 112297. https://doi.org/10.1016/j.chemphys.2024.112297
9. Альшиц В.И., Даринская Е.В., Колдаева М.В. и др. Физическая кинетика движения дислокаций вне магнитных кристаллах: взгляд через магнитное окно // УФН. 2017. Т. 187. № 3. С. 327–341. https://doi.org/10.3367/UFNr.2016.07.037869
Alshits V.I., Darinskaya E.V., Koldaeva M.V., et al. Dislocation kinetics in nonmagnetic crystals: A look through a magnetic window // Physics-Uspekhi. 2017. V. 187. № 3. P. 327–341. https://doi.org/10.3367/ufne.2016.07.037869
10. Моргунов Р.Б. Спиновая микромеханика в физике пластичности // УФН. 2004. Т. 174. № 2. С. 131–153.
https://doi.org/10.3367/UFNr.0174.200402c.0131
Morgunov R.B. Spin micromechanics in the physics of plasticity // Physics-Uspekhi. 2004. V. 47. № 2. P. 131–153. https://doi.org/10.1070/pu2004v047n02abeh001683
11. Головин Ю.И. Магнитопластичность твердых тел (обзор) // ФТТ. 2004. Т. 46. № 5. С. 769–803.
Golovin Yu.I. Magnetoplastic effects in solids // Physics of the Solid State. 2004. V. 46. № 5. P. 789–824. https://doi.org/10.1134/1.1744954
12. Головин Ю.И., Моргунов Р.Б., Баскаков А.А. и др. Влияние магнитного поля на интенсивность электролюминесценции монокристаллов ZnS // ФТТ. 1999. Т. 41. № 11. С. 1944–1947.
Golovin Y.I., Morgunov R.B., Baskakov A.A., et al. Effect of a magnetic field on the electroluminescence intensity of single-crystal ZnS // Physics of the Solid State. 1999. V. 41. № 11. P. 1783–1785. https://doi.org/10.1134/1.1131097
13. Pyshkin S., Ballato J., Bass M., et al. Luminescence of long-term ordered pure and doped gallium phosphide // J. Electronic Mater. 2008. V. 37. P. 388–395. https://doi.org/10.1007/s11664-007-0375-2
14. Волкова Л.В., Каленков С.Г., Скворцова А.А. и др. Влияние внешнего магнитного поля на люминесценцию кристаллов фосфида галлия // Письма в ЖТФ. 2025. В печати.
Volkova L.V., Kalenkov S.G., Skvortsova A.A., et al. The effect of an external magnetic field on the luminescence of gallium phosphide crystals // Technical Physics Letters. 2025. Inprint.
15. Юнович А.Э. Дивакансии азота — возможная причина желтой полосы в спектрах люминесценции нитрида галлия // Физика и техника полупроводников. 1998. Т. 32. № 10. С. 1181–1183.
Yunovich A.E. Nitrogen divacancies — The possible cause of the “yellow band” in the luminescence spectra of GaN // Semiconductors. 1998. V. 32. P. 1054–1056. https://doi.org/10.1134/1.1187564
16. Shirasaki Y., Supran G., Bawendi M., et al. Emergence of colloidal quantum-dot light-emitting technologies. // Nature Photon. 2013. V. 7. P. 13–23. https://doi.org/10.1038/nphoton.2012.328