DOI: 10.17586/1023-5086-2025-92-05-89-98
УДК: 535.42, 004.942
Numerical analysis of intensity distribution along the optical axis for non-paraxial diffractive lenses
Дюкарева О.А., Устинов А.В. Численный анализ распределения интенсивности вдоль оптической оси для непараксиальных дифракционных линз // Оптический журнал. 2025. Т. 92. № 5. С. 89–98. http://doi.org/10.17586/1023-5086-2025-92-05-89-98
Dyukareva O.A., Ustinov A.V. Numerical analysis of intensity distribution along the optical axis for non-paraxial diffractive lenses [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 5. P. 89–98. http://doi.org/10.17586/1023-5086-2025-92-05-89-98
Subject of study. Longitudinal and transverse distributions of beam intensity during diffraction of laser radiation on parabolic, spherical diffractive lenses, axicons. Aim of study. Сlarification of the influence of input lens parameters in the non-paraxial region on the formed intensity distribution for generating a beam with specified properties for various types of polarization. Method. Numerical analysis of Fresnel and the first-kind Rayleigh–Sommerfeld integrals using quadrature formulas with the use of parallel computing on a graphics device. Main results. Depending on the numerical aperture, the profile of diffractive non-paraxial lenses can be close to the profile of an axicon or parabolic lens with the corresponding focal length and ensuring the formation of an intensity peak. Homogeneous types of polarization allow the formation of an axial maximum of intensity due to the x- and y-components of the electric field; with radial polarization, it is ensured by the dominant influence of the longitudinal component. For azimuthal polarization, it is possible to form an axial focus due to transverse components when introducing a vortex phase into the input field. Practical significance. The obtained results can be useful for calculating optical elements that provide variations in the polarization and phase characteristics of the electromagnetic field, which expands the means of influencing laser radiation on matter and controlling laser processing and structuring of materials.
non-paraxial lens, parabolic lens, axicon, Rayleigh–Sommerfeld diffraction integral, polarization
Acknowledgements:this work was supported by the Russian Science Foundation (project № 22-79-10007) in terms of numerical modeling, and the State Assignment of the National Research Center "Kurchatov Institute" in the theoretical part
OCIS codes: 050.1970, 260.1960
References:1. Herzig H.P. Micro-optics : Elements, systems and applications. CRC Press, 1997. 600 p. https://doi.org/10.1201/9781482272802
2. Zappe H. Micro-optics: A micro-tutorial // Adv. Opt. Technol. 2012. V. 1. № 3. P. 117–126. https://doi.org/10.1515/aot-2012-0016
3. Zhang Q., He Z., Xie Z., et al. Diffractive optical elements 75 years on: From micro-optics to metasurfaces // Photon. Insights. 2023. V. 2. № 4. P. R09. https://doi.org/10.3788/PI.2023.R09
4. Khonina S.N., Kazanskiy N.L., Butt M.A. Exploring diffractive optical elements and their potential in free space optics and imaging — A comprehensive review // Laser Photon. Rev. 2024. P. 2400377. https://doi.org/ 10.1002/lpor.202400377
5. Khonina S.N., Kazanskiy N.L., Skidanov R.V., et al. Advancements and applications of diffractive optical elements in contemporary optics: A comprehensive overview // Adv. Mater. Technol. 2024. P. 2401028. https://doi.org/10.1002/admt.202401028
6. Gao D., Ding W., Nieto-Vesperinas M., et al. Optical manipulation from the microscale to the nanoscale: Fundamentals, advances and prospects // Light: Sci. & Applicat. 2017. V. 6. № 9. P. e17039. https://doi.org/ 10.1038/lsa.2017.39
7. Oscurato S.L., Reda F., Salvatore M., et al. Shapeshifting diffractive optical devices // Laser & Photon. Rev. 2022. V. 16. P. 2100514. https://doi.org/10.1002/lpor. 202100514
8. Porfirev A., Khonina S., Kuchmizhak A. Light-matter interaction empowered by orbital angular momentum: Control of matter at the micro-and nanoscale // Progress in Quant. Electron. 2023. V. 88. P. 100459. https://doi.org/10.1016/j.pquantelec.2023.100459
9. Скиданов Р.В., Хонина С.Н., Морозов А.А. Оптическое вращение микрочастиц в гипергеометрических пучках, сформированных дифракционными оптическими элементами с многоуровневым микрорельефом // Оптический журнал. 2013. Т. 80. № 10. С. 3–8.
Skidanov R.V., Khonina S.N., Morozov A.A. Optical rotation of microparticles in hypergeometric beams formed by diffraction optical elements with multilevel microrelief // J. Opt. Technol. 2013. V. 80. № 10. P. 585–589. https://doi.org/ 10.1364/JOT.80.000585
10. Порфирьев А.П., Скиданов Р.В. Оптический захват и манипулирование светопоглощающими частицами с помощью лазерного пучка Эрмита–Гаусса // Оптический журнал. 2015. Т. 82. № 9. С. 16–21.
Porfiriev A.P., Skidanov R.V. Optical trapping and manipulation of light-absorbing particles by means of a Hermite–Gaussian laser beam // J. Opt. Technol. 2015. V. 82. № 9. P. 587–591. https://doi.org/10.1364/JOT.82.000587
11. Balthazar W.F., Huguenin J.A.O. Conditional operation using three degrees of freedom of a laser beam for application in quantum information // JOSA B. 2016. V. 33. P. 1649–1654. https://doi.org/10.1364/JOSAB. 33.001649
12. Wang J. Twisted optical communications using orbital angular momentum // Sci. China: Phys. Mech. Astron. 2019. V. 62. № 3. P. 342011. https://doi.org/10.1007/ s11433-018-9260-8
13. Häusler A., Hummel M. Extending the degrees of freedom in laser beam microwelding // Photonics Views. 2022. V. 19. P. 87–89. https://doi.org/10.1002/phvs. 202200019
14. Fazea Y., Mezhuyev V. Selective mode excitation techniques for mode-division multiplexing: A critical review // Opt. Fiber Technol. 2018. V. 45. P. 280–288. https://doi.org/10.1016/j.yofte.2018.08.004
15. Jiang W.F., Miao J.Y., Li T. Compact silicon 10-mode multi/demultiplexer for hybrid mode- and polarisationdivision multiplexing system // Sci. Rep. 2019. V. 9. P. 13223. https://doi.org/10.1038/s41598-019-49763-0
16. Kazanskiy N.L., Khonina S.N., Karpeev S.V., et al. Diffractive optical elements for multiplexing structured laser beams // Quant. Electron. 2020. V. 50. № 7. P. 629–635. https://doi.org/10.1070/QEL17276
17. Khonina S.N., Kotlyar V.V., Soifer V.A. Fast Hankel transform for focusator synthesis // Optik. 1991. V. 88. № 4. P. 182–184.
18. Zhang D.W., Yuan X.-C., Ngo N.Q., et al. Fast Hankel transform and its application for studying the propagation of cylindrical electromagnetic fields // Opt. Exp. 2002. V. 10. № 12. P. 521–525. https://doi.org/10.1364/OE.10.000521
19. Veerman J.A.C., Rusch J.J., Urbach, P.H. Calculation of the Rayleigh–Sommerfeld diffraction integral by exact integration of the fast oscillating factor // JOSA A. 2005. V. 22. № 4. P. 636–646. https://doi.org/ 10.1364/josaa.22.000636
20. Khonina S.N., Ustinov A.V., Kovalyov A.A., et al. Near-field propagation of vortex beams: Models and computation algorithms // Optical Memory and Neural Networks (Allerton Press). 2014. V. 23. № 2. P. 50–73. https://doi.org/10.3103/S1060992X14020027
21. Хонина С.Н., Устинов А.В., Скиданов Р.В. и др. Сравнительное исследование спектральных свойств асферических линз [in Russian] // Компьютерная оптика. 2015. Т. 39. № 3. С. 363–369. https://doi. org/10.18287/0134-2452-2015-39-3-363-369
Khonina S.N., Ustinov A.V., Skidanov R.V., et al. Comparative study of spectral properties of aspherical lenses // Computer Optics. 2015. V. 39. № 3. P. 363–369. https://doi.org/10.18287/0134-2452-2015-39-3-363-239
22. Rao L., Pu J., Chen Z., et al. Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens // Opt. Laser Technol. 2009. V. 41. P. 241–246. https://doi.org/10.1016/j.optlastec.2008.06.012
23. Khonina S.N. Vortex beams with high-order cylindrical polarization: Features of focal distributions // Appl. Phys. B. 2019. V. 125. P. 100. https://doi.org/10.1007/s00340-019-7212-1