DOI: 10.17586/1023-5086-2025-92-06-45-54
A fiber sensing system based on the hybrid structure for metal ion detection and stress interference decoupling
Full text on elibrary.ru
Jun Qi Guo, Wen Yue Zheng, Qianwen Xu, Yu Liu, Yan Fang Zhou, Ren Pu Li. A fiber sensing system based on the hybrid structure for metal ion detection and stress interference decoupling (Оптоволоконная сенсорная система с гибридной структурой для обнаружения ионов металлов и устранения помех от напряжений) [in English] // Opticheskii Zhurnal. 2025. V. 92. № 6. P. 45–54. http://doi.org/10.17586/1023-5086-2025-92-06-45-54
Jun Qi Guo, Wen Yue Zheng, Qianwen Xu, Yu Liu, Yan Fang Zhou, Ren Pu Li. A fiber sensing system based on the hybrid structure for metal ion detection and stress interference decoupling (Оптоволоконная сенсорная система с гибридной структурой для обнаружения ионов металлов и устранения помех от напряжений) [на англ. языке] // Оптический журнал. 2025. Т. 92. № 6. С. 45–54. http://doi.org/10.17586/1023-5086-2025-92-06-45-54
Subject of study. The design concept of fiber metal ion detectors and wind-blast pressure in water flow. Purpose of the work. Sensitization of fiber sensor in relation to concentration of metal ions in fluid and pressure due to water flow. Method. Through theoretical analyses and computer and physical simulations, the sensitivity of sensor consisting of metal ions concentration meter, transitive D-shaped fiber module and fluid flow pressure meter based on fiber grating is investigated. Main results. As a result of metal ions concentration measurement experiments it has been proved that the device reaches a response sensitivity of metal ion concentration in the order of 105 nm·ml/mol. In addition, the sensitivity of the metal ion concentration response is ensured to be of the order of 105 nm·ml/mol, and the device is experimentally investigated for sensing characteristics of axial strain and bending deformation. Practical significance. The design concept and calculation methods of metal ion concentration and fluid flow pressure stress sensor have been developed; the sensor can be used for ecological monitoring of natural water environments.
fiber optic sensor, fluid flow stress, metal ion detection, fluid sensing structure
Acknowledgements:the work was funded by the National Natural Science Foundation of China (61705027, 62005033, and 52175531), Chongqing Science and Technology Commission Basic Research Project (CSTC-2020jcyj-msxm0603), Chongqing Municipal Education Commission Science and Technology Research Program (KJQN202000609)
OCIS codes: 060.2370
References:1. Schreiter N., Wiche O., Aubel I., Quirina R.G., Martin B. Determination of germanium in plant and soil samples using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS) with solid sampling // Journal of Geochemical Exploration. 2021. V. 220. P. 106674. https://doi.org/10.1016/j.gexplo.2020.106674
2. Chen B.H., Jiang S.J., Sahayam A.C. Determination of Cr (VI) in rice using ion chromatography inductively coupled plasma mass spectrometry // Food Chemistry. 2020. V. 324. P. 126698. https://doi.org/10.1016/j.foodchem.2020.126698
3. Ma J.X., Wang Y., Liu G.C., Xu N., Wang X.L. A pH-stable Ag(i) multifunctional luminescent sensor for the efficient detection of organic solvents, organochlorine pesticides and heavy metal ions // RSC Advances. 2020. V. 10. P. 44712–18. https://doi.org/10.1039/d0ra08991e
4. Lu M.X., Deng Y.J., Luo Y., Lv J.P., Li T.B., Xu J., Chen S.W., Wang J.Y. Graphene aerogel-metal-organic framework-based electrochemical method for simultaneous detection of multiple heavy-metal ions // Analytical Chemistry. 2019. V. 91. № 1. P. 888–895. https://doi.org/10.1021/acs.analchem.8b03764
5. Zhang Y.N., Sun Y., Cai L., Gao Y.P., Cai Y. Optical fiber sensors for measurement of heavy metal ion concentration: A review // Measurement. 2020. V. 158. P. 107742. https://doi.org/10.1016/j.measurement.2020.107742
6. Abdulkareem H.D., Alwahib A.A., Bushara R. M. PCF-multimode/endless fiber sensor for respiratory rate monitoring // Optoelectronics Letters. J. 2023. V. 19. № 1. P. 8–13. https://doi.org/10.1007/s11801-023-2114-1
7. Min R., Liu Z.Y., Pereira L., Yang C K., Sui Q., Marques C. Optical fiber sensing for marine environment and marine structural health monitoring: A review // Optics And Laser Technology. 2021. V. 140. P. 107082. https://doi.org/10.1016/j.optlastec.2021.107082
8. Li Y.Z, Miao Y.P., Wang F., Hu K., Zhang K. Micro-displacement sensor based on an asymmetric wavy multimode fiber interferometer // Optoelectronics Letters. J. 2023. V. 19. № 3. P. 134–138. https://doi.org/10.1007/s11801-023-2139-5
9. Raghunandhan R., Chen L.H. et al. Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection // Sensors and Actuators B-Chemical. 2016. V. 233. P. 31–38. https://doi.org/10.1016/j.snb.2016.04.020
10. Lu M.D., Zhou H.F., Masson J.F. Dithiol self-assembled monolayer based electrochemical surface plasmon resonance optical fiber sensor for selective heavy metal ions detection // Journal of Lightwave Technology. 2021. V. 39. № 12. P. 4034–4040. https://doi.org/10.1109/jlt.2021.3060796
11. Liu M.F. Wang J.W., Hwang S.J. In-fiber Mach–Zehnder interferometer based on hollow optic fiber for metal ion detection // Optics Express. 2022. V. 30. № 15. P. 26006. https://doi.org/10.1364/oe.459221
12. Shakya A.K., Singh S. State of the art in fiber optics sensors for heavy metals detection // Optics And Laser Technology. 2022. V. 153. P. 108246. https://doi.org/10.1016/j.optlastec.2022.108246
13. Ghosh S., Dissanayake K., Asokan S., Sun T., Rahman B.M.A., Grattan K.T.V. Lead (Pb2+) ion sensor development using optical fiber gratings and nanocomposite materials // Sensors and Actuators B-Chemical. 2022. V. 364. P. 131818. https://doi.org/10.1016/j.snb.2022.131818
14. Liu Z., Li GS., Zhang A., Zhou G.Y., Huang X.G. Ultra-sensitive optical fiber sensor based on intermodal interference and temperature calibration for trace detection of copper (II) ions // Optics Express. 2021. V. 29. № 15. P. 22992–23005. https://doi.org/10.1364/oe.434687
15. Zhou R., Qiao X.G., Wang R.H., Chen F.Y., Ma W.W. An optical fiber sensor based on lateral-offset spliced seven-core fiber for bending and stretching strain measurement // IEEE Sensors Journal. 2020. V. 20. № 11. P. 5915–5920. https://doi.org/10.1109/jsen.2020.2973203
16. Zhu Chen., Zheng H.K., Alsalman O., Naku W., Ma L.M. et al. Simultaneous and multiplexed measurement of curvature and strain based on optical fiber Fabry–Perot interferometric sensors // Photonics. 2023. P. 580. https://doi.org/10.3390/photonics10050580
17. Zhao J.C., Zhao Y., Bai L., Zhang Y.N. Sagnac interferometer temperature sensor based on microstructured optical fiber filled with glycerin // Sensors and Actuators A-Physical. 2020. V. 314. P. 112245. https://doi.org/10.1016/j.sna.2020.112245
18. Liu Y.D., Chen H.L., Chen Q., Li B.C., Li S.G. Experimental study on dual-parameter sensing based on cascaded Sagnac interferometers with two PANDA fibers // Journal of Lightwave Technology. 2022. V. 40. № 9. P. 3090–3097. https://doi.org/10.1109/jlt.2022.3145004
19. Pang, M., Xuan, H. F., Ju, J., Jiu, W. lnfluence of strain and pressure to the effective refractive index of the fundamental mode of hollow-core photonic bandgap fibers // Optics Express. 2010.V. 18. № 13. P. 14041-14055. https://doi.org/10.1364/oe.18.014041.DO1:10.1364/0e.18.014041
ru