DOI: 10.17586/1023-5086-2025-92-07-35-51
УДК: 535.42, 778.38
Waveguide holographic periscopes with two-coordinate multiplication of the exit pupil based on the one-dimensional diffraction grating
Full text on elibrary.ru
Путилин Н.А., Дубынин С.Е., Путилин А.Н., Копенкин С.С., Бородин Ю.П. Волноводные голографические перископы с двухкоординатной мультипликацией выходного зрачка на одномерной дифракционной решетке // Оптический журнал. 2025. Т. 92. № 7. С. 35–51. http://doi.org/10.17586/1023-5086-2025-92-07-35-51
Putilin N.A., Dubynin S.E., Putilin A.N., Kopenkin S.S., Borodin Yu.P. Waveguide holographic periscopes with two-coordinate multiplication of the exit pupil based on the one-dimensional diffraction grating [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 7. P. 35–51. http://doi.org/10.17586/1023-5086-2025-92-07-35-51
Subject of study. Waveguide holographic periscopes based on the one-dimensional diffraction grating and their application for multiplying the exit pupil of augmented reality displays. Aim of study. The aim of the paper is to find higher energy efficient variants for waveguide holographic periscopes design. Method. The study involved computer modeling using original software. Several samples of waveguide holographic periscopes were developed and models of augmented reality displays based on them were created in the series of experimental studies. Main results. It has been determined that the 2nd diffraction orders exist when rays from a waveguide fall on a diffraction grating, its intensity can exceed the intensity of the 1st diffraction orders in some cases. The multiplied rays at the output of the waveguide holographic periscope remain parallel. To a first approximation the system remains anaberrational. The two-dimensional ray multiplication has been revealed by using of one-dimensional surface-relief diffraction grating with oblique incidence of the beams. Practical significance. The proposed scheme for constructing a waveguide holographic multiplexer of the exit pupil provides greater energy efficiency (up to 8–10 times for certain angles of the field of view) with greater simplicity of the scheme. The proposed solutions can be used in the development of head up displays.
waveguide holographic periscope, augmented reality displays, two-dimensional multiplication of the exit pupil
Acknowledgements:the work was supported by the Priority 2030 program, grant № 075-15-2024-225
OCIS codes: 090.2820, 090.2890
References:- Ding Y., Yang Q., Li Y., et al. Waveguide-based augmented reality displays: Perspectives and challenges // eLight. 2023. V. 3. № 1. P. 24–58. https://doi.org/10.1186/s43593-023-00057-z
- Kress B.C., Pace M. Holographic optics in planar optical systems for next generation small form factor mixed reality headsets // Light: Advanced Manufacturing. 2022. V. 3. № 4. P. 771–801. https://doi.org/10.37188/lam.2022.042
- Cheng D., Wang Q., Liu Y., et al. Design and manufacture AR head-mounted displays: A review and outlook // Light: Advanced Manufacturing. 2021. V. 2. № 3. P. 350–369. https://doi.org/10.37188/lam.2021.024
- Wang J., Zhou Q., Chen J., et al. Design of a see-through off-axis head-mounted-display optical system with an ellipsoidal surface // Current Opt. and Photon. 2018. V. 2. № 3. P. 280–285. http://doi.org/10.3807/COPP.2018.2.3.280
- Wei L., Li Y., Jing J., et al. Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface // Opt. Exp. 2018. V. 26. № 7. P. 8550–8565. https://doi.org/10.1364/OE.26.008550
6. Upatnieks J. Compact head-up display // US Patent 4 711 512 A. 1885. Publ. Dec. 8, 1987.
7. Upatnieks J. Compact holographic sight / Holographic optics: Design and applications. SPIE, 1988. V. 883. P. 171–176.
8. Levola T. Diffractive optics for virtual reality displays // J. Soc. for Information Display. 2006. V. 14. № 5. P. 467–475. https://doi.org/10.1889/1.2206112
9. Levola T. Compact see-though near to eye display with diffractive optical elements // Korea Information Display Soc.: Conf. Proc. 2007. P. 1749–1752.
10. Solomashenko A., Lushnikov D., Shishova M., et al. Image quality for near-eye display based on holographic waveguides // Appl. Sci. 2022. V. 12. № 21. P. 11136. https://doi.org/10.3390/app122111136
11. Odinokov S.B., Shishova M.V., Markin V.V., et al. Augmented reality display based on photo-thermo-refractive glass planar waveguide // Opt. Exp. 2020. V. 28. № 12. P. 17581–17594. https://doi.org/10.1364/OE.395273
12. Lee Y.H., Yin K., Wu S.T. Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays // Opt. Exp. 2017. V. 25. № 22. P. 27008–27014. https://doi.org/10.3390/app122111136
13. Steiner S., Jotz M., Bachhuber F., et al. Enabling mass manufacturing of industry-standard optical waveguide combiners // J. Opt. Microsystems. 2023. V. 3. № 3. P. 033502–033502. https://doi.org/10.1117/1.JOM.3.3.033502
14. Wang L., Zhao Y., Zeng L. High combiner efficiency and self-aligned compact double-sided diffractive waveguide based on linear surface relief gratings // Opt. Exp. 2024. V. 32. № 27. P. 48072–48092. https://doi.org/10.1364/OE.544302
15. Bigler C.M., Blanche P.A., Sarma K. Holographic waveguide heads-up display for longitudinal image magnification and pupil expansion // Appl. Opt. 2018. V. 57. № 9. P. 2007–2013. https://doi.org/10.1364/AO.57.002007
16. Homan M. The use of optical waveguides in head up display (HUD) applications / Display Technol. and Applications for Defense, Security, and Avionics VII. SPIE, 2013. V. 8736. P. 86–99. https://doi.org/10.1117/12.2014513
17. Ni D., Cheng D., Liu Y., et al. Uniformity improvement of two-dimensional surface relief grating waveguide display using particle swarm optimization // Opt. Exp. 2022. V. 30. № 14. P. 24523–24543. https://doi.org/10.1364/OE.462384
18. Bigler C.M., Mann M.S., Blanche P.A. Holographic waveguide HUD with in-line pupil expansion and 2D FOV expansion // Appl. Opt. 2019. V. 58. № 34. P. G326–G331. https://doi.org/10.1364/AO.58.00G326
19. Путилин А.Н., Морозов А.В., Копенкин С.С. и др. Голографические волноводные перископы в дисплеях дополненной реальности // Опт. и спектроск. 2020. Т. 128. № 11. С. 1694–1702. https://doi.org/10.21883/OS.2020.11.50172.93-20
Putilin A.N., Morozov A.V., Kopenkin S.S., et al. Holographic waveguide periscopes in augmented reality displays // Opt. and Spectrosc. 2020. V. 128. № 11. P. 1828–1836. https://doi.org/10.1134/s0030400x2011020x
20. Путилин Н.А., Дубынин С.Е., Путилин А.Н. и др. Искажения виртуального изображения в схемах дисплеев дополненной реальности на волноводных голограммах: возникновение тангенциальной дисторсии и хроматизма увеличения // Оптический журнал. 2024. Т. 91. № 3. С. 79–94. http://doi.org/10.17586/1023-5086-2024-91-03-79-94
Putilin N.A., Dubynin S.E., Putilin A.N., et al. Distortions of the virtual image in augmented reality displays based on waveguide holograms: the arising of tangential distortion and magnification chromatism // J. Opt. Technol. 2024. V. 91. № 3. P. 181–190. https://doi.org/10.1364/JOT.91.000181
21. Введение в интегральную оптику / Под ред. Барноски М. Пер. с англ. под ред. Шмаонова Т.А. М.: Мир, 1977. 367 с.
Introduction to integrated optics / Ed. by Barnoski M. N.Y.: Plenum Press, 1974. 515 p.
22. Rolland J.P., Goodsell J. Waveguide-based augmented reality displays: A highlight // Light: Science & Applications. 2024. V. 13. № 1. P. 22–24. https://doi.org/10.1038/s41377-023-01371-4
23. Кольер Р., Беркхарт К., Лин Л. Оптическая голография. М.: Мир, 1973. 686 с.
Collier R.J., Burckhardt C.B., Lin L.H. Optical holography. N.Y.: Academic Press, 1971. 605 p.
24. Балагуров А.Я., Морозов В.Н., Путилин А.Н. и др. Исследование двухлучевого режима ввода излучения в планарный волновод // ЖТФ. 1986. Т. 56. № 7. С. 1406–1407.
Balagurov A.Ya., Morozov V.N., Putilin A.N., et al. Investigation of the 2-ray regime of a radiation input into the planar waveguide [in Russian] // J. Technical Phys. 1986. V. 56. № 7. P. 1406–1407.
ru