ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-07-73-86

УДК: 535.42, 778.38

Development of large-size augmented reality displays based on waveguide holographic periscopes

For Russian citation (Opticheskii Zhurnal):

Путилин А.Н., Копёнкин С.С., Путилин Н.А., Дубынин С.Е., Бородин Ю.П., Морозов А.В., Афанасьев М.С. Разработка большеразмерных дисплеев дополненной реальности на основе волноводных голографических перископов // Оптический журнал. 2025. Т. 92. № 7. С. 73–86. http://doi.org/10.17586/1023-5086-2025-92-07-73-86

 

Putilin A.N., Kopenkin S.S., Putilin N.A., Dubynin S.E., Borodin Yu. P., Morozov A.V., Afanasiev M.S. Development of large-size augmented reality displays based on waveguide holographic periscopes [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 7. P. 73–86. http://doi.org/10.17586/1023-5086-2025-92-07-73-86

For citation (Journal of Optical Technology):
-
Abstract:

Scope of research. Waveguide holographic optical elements for large-size Augmented Reality displays design, it’s characteristics and recording schemes. The purpose. Modeling, development and production of test samples of waveguide holographic periscopes for large-scale Augmented Reality systems. Method. Computer modeling of waveguide diffraction gratings and holographic recording of large-size holographic gratings were used as the main methods. At first, studies and comparisons of several types of waveguide multiplexers of the exit pupil of augmented reality displays were carried out. Then, the recording of large-sized waveguide diffraction gratings - the basis of waveguide holographic multiplexers of the exit pupil was performed. The main results. Original software for modeling waveguide holographic periscopes has been developed, known schemes have been studied, and an original, more optimal configuration has been proposed. Schemes for recording large-sized (up to 300ґ250 mm) waveguide holographic periscopes and their copying have been developed. The experimental model of the Head-Up Display has been developed, based on large-size waveguide diffraction periscopes. It has significantly smaller dimensions and weight in comparison with known examples of classical systems (the weight of the model is less than 5 kg). The Head-Up Display parameters achieved: eye relief up to 900 mm, large exit pupil up to 250ґ300 mm, angular field of view up to 25° diagonally, operation with a standard  incoherent projection system in the spectral range of 510–540 nm. Practical significance. The developed model of Head-Up Display is a working prototype of an augmented reality display for vehicles, which is distinguished by significantly smaller dimensions and weight with high optical characteristics. The possibility of its mass production is shown.

Keywords:

waveguide diffraction gratings, holographic optical elements, augmented reality displays, windshield indicators

Acknowledgements:

the work was supported by the Priority 2030 program, grant № 075-15-2024-225.

OCIS codes: 090.2820, 090.2890

References:

1. Kress B.C. Optical waveguide combiners for AR headsets: Features and limitations / Digital Opt. Technol. 2019. SPIE, 2019. V. 11062. P. 75–100. https://doi.org/10.1117/12.2527680
2. Upatnieks J. Edge-illuminated holograms // Appl. Opt. 1992. V. 31. № 8. P. 1048–1052. https://doi.org/10.1364/AO.31.001048
3. Putilin A.N., Morozov V.N., Huang Q., et al. Waveguide holograms with white light illumination // Opt. Eng. 1991. V. 30. № 10. P. 1615–1620. https://doi.org/10.1117/12.55969
4. Ding Y., Yang Q., Li Y., et al. Waveguide-based augmented reality displays: Perspectives and challenges // eLight. 2023. V. 3. № 1. P. 24–58. https://doi.org/10.1186/s43593-023-00057-z
5. Homan M. The use of optical waveguides in head up display (HUD) applications / Display Technol. and Applicat. for Defense, Security, and Avionics VII. SPIE, 2013. V. 8736. P. 86–99. https://doi.org/10.1117/12.2014513
6. Никифоров О.В., Пименов Ю.Д., Сокольский М.Н. и др. Оптическая система широкоугольного коллиматорного авиационного индикатора // Оптический журнал. 2009. Т. 76. № 10. С. 37–41.
 Nikiforov O.V., Pimenov Yu.D., Sokol’skiĭ M.N. The optical system of a wide-angle collimator-type aviation display // J. Opt. Technol. 2009. V. 76. № 10. P. 620–623. https://opg.optica.org/jot/abstract.cfm?URI=jot-76-10-620
7. Meng D.Y., Yang X., Song Q., et al. Large-scale volume holographic optical waveguide for automotive augmented reality head-up display [in Chinese] // Acta Optica Sinica. 2023. V. 43. № 10. P. 1011002 https://doi.org/10.3788/AOS222103
8. Wei R., Yang C., Wang C., et al. Large-size PVG-based waveguide simulation and uniformity optimization for AR-HUD // Opt. Exp. 2024. V. 32. № 14. P. 25362–25374. https://doi.org/10.1364/OE.529034
9. Grey D.J., Valera M.S. Waveguide for an augmented reality or virtual reality display // US Patent 0 110 261 A1. 2001. Publ. Apr. 9, 2020.
10. Crosby D., Phelan C. Methods for designing diffraction grating for augmented reality or virtual reality display and diffraction grating for augmented reality or virtual reality display // US Patent 0 019 698 A1. 2024. Publ. Jan. 18, 2024.
11. Путилин Н.А., Дубынин С.Е., Путилин А.Н. и др. Искажения виртуального изображения в схемах дисплеев дополненной реальности на волноводных голограммах: возникновение тангенциальной дисторсии и хроматизма увеличения // Оптический журнал. 2024. Т. 91. № 3. С. 79–94. http://doi.org/10.17586/1023-5086-2024-91-03-79-94
 Putilin N.A., Dubynin S.E., Putilin A.N., et al. Distortions of the virtual image in augmented reality displays based on waveguide holograms: The arising of tangential distortion and magnification chromatism // J. Opt. Technol. 2024. V. 91. № 3. P. 181–190. https://doi.org/10.1364/JOT.91.000181
12. Steiner S., Jotz M., Bachhuber F., et al. Enabling mass manufacturing of industry-standard optical waveguide combiners // J. Opt. Microsystems. 2023. V. 3. № 3. P. 033502–033502.