ITMO
en/ en

ISSN: 1023-5086

en/

ISSN: 1023-5086

Научно-технический

Оптический журнал

Полнотекстовый перевод журнала на английский язык издаётся Optica Publishing Group под названием “Journal of Optical Technology“

Подача статьи Подать статью
Больше информации Назад

DOI: 10.17586/1023-5086-2024-91-06-5-17

УДК: 535.372, 535.34, 616-073.8

Легированные гадолинием углеродные точки с излучением в длинноволновой области спектра для двухмодальной визуализации

Ссылка для цитирования:

Ефимова А.А., Бадриева З.Ф., Бруй Е.А., Мирущенко М.Д., Алейник И.А., Митрошин А.М., Волина О.В., Королева А.В., Жижин Е.В., Степаниденко Е.А., Ушакова Е.В. Легированные гадолинием углеродные точки с излучением в длинноволновой области спектра для двухмодальной визуализации // Оптический журнал. 2024. Т. 91. № 6. С. 5–17. http://doi.org/ 10.17586/1023-5086-2024-91-06-5-17

 

Efimova A.A., Badrieva Z.F., Brui E.A., Miruschenko M.D., Aleinik I.A., Mitroshin A.M., Volina O.V., Koroleva A.V., Zhizhin E.V., Stepanidenko E.A., Ushakova E.V. Gadolinium-doped carbon dots with long-wavelength emission for dual-modal imaging // Opticheskii Zhurnal. 2024. V. 91. № 6. P. 5–17. http://doi.org/ 10.17586/1023-5086-2024-91-06-5-17

Ссылка на англоязычную версию:
-
Аннотация:

Предмет исследования. Люминесцентные углеродные точки, полученные из о-фенилендиамина и гексагидрата хлорида или нитрата гадолиния. Цели работы. Создание углеродных точек с длинноволновой фотолюминесценцией, легированных гадолинием, обладающих свойствами контрастного вещества для магнитно-резонансной томографии. Исследование влияния типа используемого прекурсора на химический состав и оптические переходы полученных наночастиц. Метод. Образцы углеродных точек синтезировали одностадийным сольвотермальным методом. Для исследования состава и оптических свойств использовали методы спектроскопии. Т1- и Т2-карты измеряли с помощью клинического магнитно-резонансного томографа c полем 1,5 Тл. Основные результаты. В работе синтезированы два типа углеродных точек из о-фенилендиамина и гексагидрата хлорида или нитрата гадолиния сольвотермальным методом. Установлено, что легирование металлом в достаточной для дальнейших исследований концентрации происходит только с использованием хлорида гадолиния. Кроме того, присутствие хлорида гадолиния приводит к формированию в углеродных точках люминесцентных центров с излучением в области 600–720 нм и квантовым выходом фотолюминесценции 6,3%. Использование нитрата гадолиния увеличивает содержание азота в углеродных точках, но легирования металлом не происходит. Люминесцентная полоса с максимумом излучения на 550 нм и квантовым выходом фотолюминесценции 7,4% обусловлена формированием производных из о-фенилендиамина в таких углеродных точках. Показано, что полученные углеродные точки, легированные гадолинием, способны изменять времена релаксации во время магнитно-резонансного сканирования. Были рассчитаны релаксивности r1 и r2, равные 6,4 и 38,6 л х ммоль–1 х с–1, соответственно. Установлено, что синтезированные углеродные точки во время магнитно-резонансного сканирования ведут себя как положительное контрастное вещество. Практическая значимость. Углеродные точки с излучением в длинноволновой области спектра перспективны для использования в качестве нанозондов для люминесцентной визуализации. Легирование гадолинием позволило расширить область применения
люминесцентных углеродных точек: представленные в работе наночастицы могут быть использованы также в качестве контрастного вещества во время магнитно-резонансной томографии. Таким образом, углеродные точки из о-фенилендиамина и гексагидрата хлорида гадолиния в дальнейшем могут быть использованы в качестве двухмодального нанозонда для биовизуализации.

Ключевые слова:

углеродные точки, длинноволновая фотолюминесценция, люминесцентная визуализация, магнитно-резонансная визуализация, контрастные вещества

Благодарность:

работа поддержана Российским научным фондом, проект № 22-73-00090, https://rscf.ru/project/22-73-00090/. Магнитно-резонансные изображения были получены за счёт государственного задания № FSER-2022-0010 в рамках национального проекта «Наука и университеты»

Коды OCIS: 160.2540, 160.4236, 170.3880, 170.4580, 300.6280

Список источников:

1. Wang J., Fu Y., Gu Z. et al. Multifunctional carbon dots for biomedical applications: Diagnosis, therapy, and theranostic // Small. 2024. V. 20. № 3. P. 2303773. https://doi.org/10.1002/smll.202303773
2. Hussain M., Khan W., Ahmed F. et al. Recent developments of Red/NIR carbon dots in biosensing, bioimaging, and tumor theranostics // Chemical Engineering Journal. 2023. V. 465. https://doi.org/10.1016/j. cej.2023.143010
3. Khavlyuk P.D., Stepanidenko E.A., Bondarenko D.P. et al. The influence of thermal treatment conditions (solvothermal versus microwave) and solvent polarity on the morphology and emission of phloroglucinolbased nitrogen-doped carbon dots // Nanoscale. Royal Society of Chemistry (RSC). 2021. V. 13. № 5. P. 3070–3078. https://doi.org/10.1039/d0nr07852b
4. Kosolapova K.D., Koroleva A.V., Arefina I.A. et al. Energylevel engineering of carbon dots through a post-synthetic treatment with acids and amines // Nanoscale. 2023. V. 15. № 19. P. 8845–8853. https://doi.org/10.1039/d3nr00377a
5. Arefina I.A., Kurshanov D.A., Vedernikova A.A. et al. Carbon dot emission enhancement in covalent complexes with plasmonic metal nanoparticles // Nanomaterials. MDPI. 2023. V. 13. № 2. P. 223. https://doi.org/10.3390/nano13020223
6. Степаниденко Е.А., Ведерникова А.А., Ондар С.О. и др. Углеродные наночастицы, легированные медью,как двух-модальный нанозонд для люминесцентной и магнитно-резонансной визуализации // Оптика и спектроскопия. 2023. Т. 131. № 7. С. 978–984. https://doi.org/10.21883/OS.2023.07.56134.4983-23
7. Stepanidenko E.A., Vedernikova A.A., Badrieva Z.F. et al. Manganese-doped carbon dots as a promising nanoprobe for luminescent and magnetic resonance imaging // Photonics. 2023. V. 10. № 7. P. 757. https://doi.org/10.3390/photonics10070757
8. Redondo-Fernandez G., Cigales Canga J., Soldado A. et al. Functionalized heteroatom-doped carbon dots for biomedical applications: A review // Anal Chim Acta. Elsevier, 2023. V. 1284. P. 341874. https://doi.org/10.1016/J.ACA.2023.341874
9. Xiao Y.D. Paudel R., Liu J. et al. MRI contrast agents: Classification and application (Review) // Int J Mol Med. Spandidos Publications. 2016. V. 38. № 5. P. 1319–1326. https://doi.org/10.3892/IJMM.2016.2744/HTML
10. Pintaske J., Martirosian P., Graf H. et al. Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla // Invest Radiol. 2006. V. 41. № 3. P. 213–221. https://doi.org/10.1097/01.rli.0000197668.44926.f7
11. Ding H., Wang D., Sadat A. et al. Single-atom gadolinium anchored on graphene quantum dots as a magnetic resonance signal amplifier // ACS Appl Bio Mater. 2021. V. 4. № 3. P. 2798–2809. https://doi.org/10.1021/acsabm.1c00030
12. Liu Y., Zhi X., Hou W. et al. Gd3+-ion-induced carbondots self-assembly aggregates loaded with a photosensitizer for enhanced fluorescence/MRI dual imaging and antitumor therapy // Nanoscale. 2018. V. 10. № 40. P. 19052–19063. https://doi.org/10.1039/C8NR05886E
13. Molaei M.J. Turmeric-derived gadolinium-doped carbon quantum dots for multifunctional fluorescence imaging and MRI contrast agent // J Lumin. 2023. V. 257. P. 119692. https://doi.org/10.1016/j.jlumin. 2023.119692
14. Li X., Fu Y., Zhao S. et al. Metal ions-doped carbon dots: Synthesis, properties, and applications // Chemical Engineering Journal. 2022. V. 430. P. 133101. https://doi.org/10.1016/j.cej.2021.133101
15. Du F., Zhang L., Zhang L. et al. Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors // Biomaterials. 2017. V. 121. P. 109–120. https://doi.org/10.1016/j.biomaterials.2016.07.008
16. Molaei M.J. Gadolinium-doped fluorescent carbon quantum dots as MRI contrast agents and fluorescent probes // Sci Rep. 2022. V. 12. № 1. P. 17681. https://doi.org/10.1038/s41598-022-22518-0
17. Huang Y., Li L., Zhang D. et al. Gadolinium-doped carbon quantum dots loaded magnetite nanoparticles as a bimodal nanoprobe for both fluorescence and magnetic resonance imaging // Magn Reson Imaging. 2020. V. 68. P. 113–120. https://doi.org/10.1016/j.mri.2020.02.003
18. Li Y., Li B., Wang X. et al. Safe and efficient magnetic resonance imaging of acute myocardial infarction with gadolinium-doped carbon dots // Nanomedicine. 2020. V. 15. № 24. P. 2385–2398. https://doi.org/10.2217/nnm-2020-0160
19. Mauro N., Cillari R., Gagliardo C. et al. Gadoliniumdoped carbon nanodots as potential anticancer tools for multimodal image-guided photothermal therapy and tumor monitoring // ACS Appl Nano Mater. 2023. V. 6. № 18. P. 17206–17217. https://doi.org/10.1021/acsanm.3c03583
20. Wang H., Xing H., Liu W. et al. Gadolinium-doped carbon dots as a ratiometric fluorometry and colorimetry dual-mode nano-sensor based on specific chelation for morin detection // Sens Actuators B Chem. 2022. V. 352. P. 130991. https://doi.org/10.1016/j.snb.2021.130991
21. Liu L., Qian M., Yang Z. et al. Ratiometric visualization of folic acid with a smartphone-assisted fluorescence paper device based on gadolinium and nitrogen co-doped CDs // Dyes and Pigments. 2023. V. 209. P. 110877. https://doi.org/10.1016/j.dyepig.2022.110877
22. Chen H., Qiu Y., Ding D. et al. Gadolinium-encapsulated graphene carbon nanotheranostics for imagingguided photodynamic therapy // Advanced Materials. 2018. V. 30. № 36. P. 1802748. https://doi.org/10.1002/adma.201802748
23. Musaeva D.U., Kopylov A.N., Syuy A.V. et al. Gadolinium-doped carbon nanoparticles with red fluorescence and enhanced proton relaxivity as bimodal nanoprobes for bioimaging applications // Applied Sciences. 2023. V. 13. № 16. P. 9322. https://doi.org/10.3390/app13169322
24. Fang Y., Zhou L., Zhao J. et al. Facile synthesis of pH-responsive gadolinium(III)-doped carbon nanodots with red fluorescence and magnetic resonance properties for dual-readout logic gate operations // Carbon N Y. 2020. V. 166. P. 265–272. https://doi.org/10.1016/j.carbon.2020.05.060
25. Мамардашвили Н.Ж., Голубчиков О.А. Спектральные свойства порфиринов и их предшественников и производных // Успехи химии. 2001. T. 70. № 7. С. 656–686.
26. Zhang Q., Wang R., Feng B. et al. Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation // Nat Commun. Nature Publishing Group. 2021. V. 12. № 1. P. 6856. https://doi.org/10.1038/s41467-021-27071-4
27. Uttamlal M., Sheila Holmes-Smith A. The excitation wavelength dependent fluorescence of porphyrins // Chem Phys Lett. North-Holland. 2008. V. 454. № 4–6. P. 223–228. https://doi.org/10.1016/J.CPLETT. 2008.02.012
28. Вишератина А.К., Мартыненко И.В., Орлова А.О. и др. Исследование биосовместимых комплексов квантовых точек ZnS, допированных ионами Mn2+, с хлорином е6 // Оптический журнал. 2014. Т. 81. № 8. С. 31–37.
29. Venkatesh Y., Venkatesan M., Ramakrishna B. et al. Ultrafast time-resolved emission and absorption spectra of meso-pyridyl porphyrins upon soret band excitation studied by fluorescence up-conversion and transient absorption spectroscopy // J Phys Chem B. 2016. V. 120. № 35. P. 9410–9421. https://doi.org/10.1021/acs.jpcb.6b05767
30. Муравьева Т.Д., Дадеко А.В., Киселев В.М. и др. Сравнительное изучение фотофизических свойств низкотоксичных фотосенсибилизаторов на основе эндогенных порфиринов // Оптический журнал. 2018. Т. 85. № 11. С. 65–80. http://doi.org/10.17586/1023-5086-2018-85-11-65-80
31. Caspani S. Magalhães R., Araújo J.P. et al. Magnetic nanomaterials as contrast agents for MRI // Materials. Multidisciplinary Digital Publishing Institute. 2020. V. 13. № 11. P. 2586. https://doi.org/10.3390/ma13112586