ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

Why are astigmatic surfaces obtained when machines designed for fabricating surfaces with rotational symmetry are used? Experimental results and analysis

For Russian citation (Opticheskii Zhurnal):

Кордеро Давилa А., Лемус Алонсо Г.П., Исасага Перес Р., Пино Мота Е. Почему при использовании станков, сконструированных для изготовления поверхностей с симметрией вращения, получаются астигматические поверхности? Результаты экспериментов и анализ // Оптический журнал. 2015. Т. 82. № 3. С. 68–72.

 

Cordero Dávila A., Lemus Alonso G.P., Izazaga Perez R., Pino Mota E. Why are astigmatic surfaces obtained when machines designed for fabricating surfaces with rotational symmetry are used? Experimental results and analysis [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 3. P. 68–72.

For citation (Journal of Optical Technology):

A. Cordero Dávila, G. P. Lemus Alonso, E. Pino Mota, and R. Izazaga Perez, "Why are astigmatic surfaces obtained when machines designed for fabricating surfaces with rotational symmetry are used? Experimental results and analysis," Journal of Optical Technology. 82(3), 181-184 (2015). https://doi.org/10.1364/JOT.82.000181

Abstract:

Astigmatic surfaces are usually obtained when commercial grinding machines designed for the production of surfaces of revolution are used. See R. Aspden et al. [Appl. Opt.11, 2739 (1972)] and A. S. Savel’ev and A. P. Bogdanov [Sov. J. Opt. Tech.52, 294 (1985)]. The dragging force applied by the rotating glass on a fixed tool fabricated from Teflon was measured in order to find an explanation for this phenomenon. It was detected that, regardless of the grinding machine, the rotational speed of the glass, and the radial position of the tool, the dragging force is invariably periodic and synchronous with the rotation of the glass. Experiments were carried out in three different optical shops. In addition, numerical modelling was carried out, as a result of which it was detected that a periodic frictional force, synchronized with the rotation of the glass, induces astigmatic wear. It was also concluded that a periodic frictional force can result from errors in parallelness between the surfaces of the glass and/or the axis of rotation of the grinding machine.

Keywords:

astigmatism, dragging force, optical surfaces grinding

Acknowledgements:

Part of this work was carried out as part of the master’s thesis of Gildardo Pablo Lemus Alonso “Measurement of the dragging force and its relationship with the production of astigmatic surfaces in the process of grinding,” December, 2011. Elizabeth Percino Zacarías, Claudia Carballo Manuel, and J. Miguel Arroyo Hernández from the Instituto Nacional de Astrofísica, Óptica y Electrónica. Jorge Cuautle Cortés, and Noé Cuautle Tepox from the Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla.

OCIS codes: 220.5450, 220.4610, 220.0220

References:

1. Aspden R., McDonough R., Nitchie F.R., Jr. Computer assisted optical surfacing // Applied Optics. 1972. V. 11. № 12. 2739.
2. Saveliev S., BogdanovA. P. Automated polishing of large optical components whit a small tool // Journal of Optical Technology. 1985. V. 52(5).
3. Preston F.W. Theory and design of plate glass polishing // Machines Journal of the Society of Glass Technology. 1927. № XI. Р. 214–255.
4. Téllez Arriaga L, Cordero Dávila A., Robledo Sánchez C.I., Cuautle Cortés J. Correction of the Preston Equation for low speeds // Applied Optics. 2007. V. 46. P. 1408–1410.
5. Izazaga Pérez R., Cordero Dávila A., Gonzáles García J., Cuautle Cortés J. Measurement of dragging force on optical surface polishing by using teflon tools // Деп. в VII Reunión Iberoamericana de Óptica.
6. (RIAO), X Encuentro Latinoamericano de Óptica, Láseres y Aplicaciones (OPTILAS), Pontificia Universidad Católica del Perú, Lima от 01.07.2010.
7. Jiun-Yu Lai Mechanics, mechanisms, and modeling of the chemical mechanical polishing process // Ph D. Thesis, Dissertation. Massachusetts Institute of Technology. 2001.
8. Prasanna Bvenkatesh R., Nagendra Prasad Y., Tae-Young Kkon, Ypung-Yae Kang, Jin-Goo Park Effect of alkaline pH on polishing and etching of single and polycrystalline Silicon // Japanese Journal of Applied Physics. 2012. V. 51. 071301.
9. Philipossian A., Olsen S. Fundamental ribological and removal rate studies of inter-layer dielectric chemical mechanical planarization // Japanese Journal of Applied Physics. 2003. V. 42. P. 6371–6379.
10. Boumyoung Park, Hyunseop Lee, Youngjin Kim, Haedo Leong Effect of process parameters on friction force and material removal in oxide chemical mechanical polishing // Japanese Journal of Applied Physics. 2008. V. 47. P. 8771–8778.
11. Spiridonov V.P., Lopatkin A.A. Tratamiento Matemático de Datos Físico-Químicos. M.: Mir, 1973. 207 p.