Method of pupil shaping for off-axis illumination in optical lithography
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Ming Chen, Fang Zhang, Aijun Zeng, Jing Zhu, Baoxi Yang, and Huijie Huang Method of pupil shaping for off-axis illumination in optical lithography (Способ формирования зрачка для внеосевого освещения в оптической литографии) [на англ. яз.] // Оптический журнал. 2016. Т. 83. № 3. С. 20–26.
Ming Chen, Fang Zhang, Aijun Zeng, Jing Zhu, Baoxi Yang, and Huijie Huang Method of pupil shaping for off-axis illumination in optical lithography (Способ формирования зрачка для внеосевого освещения в оптической литографии) [in English] // Opticheskii Zhurnal. 2016. V. 83. № 3. P. 20–26.
Ming Chen, Fang Zhang, Aijun Zeng, Jing Zhu, Baoxi Yang, and Huijie Huang, "Method of pupil shaping for off-axis illumination in optical lithography," Journal of Optical Technology. 83(3), 154-158 (2016). https://doi.org/10.1364/JOT.83.000154
Off-axis illumination is one of the key resolution enhancement technologies in projection lithography systems. Phase type diffractive optical elements are adopted by most of the lithography machine manufacturers to realize off-axis illumination. In this paper, a method of pupil shaping for off-axis illumination in optical lithography is introduced which contains a zoom beam expander, circularly symmetric diffractive optical elements, and a Fourier lens. The method could produce the required illumination pattern for off-axis illumination at the pupil plane. Compared with the conventional method of off-axis illumination, the method in this paper could eliminate deterioration of the pupil thoroughly and reduces the difficulty of the optical design of the zoom lens. Based on this method, several circularly symmetric diffractive optical elements are designed for experiments, and a remarkable improvement in eliminating deterioration of the pupil is observed compared with the conventional method.
optical lithography, off-axis illumination, axicon, diffractive optical element, Fourier lens
OCIS codes: 110.5220, 090.1970, 220.4830
References:1. Himel M.D., Hutchins R.E., Colvin J.C., Poutous M.K., Kathman A.D., and Fedor A.S. Design and fabrication of customized illumination patterns for low k1 lithography: A diffractive approach // Proc. SPIE. 2001. V. 4691. P. 1436–1442.
2. Levinson H.J. Principles of lithography. Bellingham, Washington, USA: SPIE Press, 2005. 524 p.
3. Qiaofeng T., Yingbai Y., and Cuofan J. Statistic analysis of influence of phase distortion on diffractive optical element for beam smoothing // Opt. Exp. 2004. V. 12. № 14. P. 3270–3278.
4. Tan L.Y., Yu J.J., Ma J., Yang Y.Q., Li M., Jiang Y.J., Liu J.F., and Han Q.Q. Approach to improve beam quality of inter-satellite optical communication system based on diffractive optical elements // Opt. Exp. 2009. V. 17. № 8. P. 6311–6319.
5. Caley A.J., Thomson M.J., Liu J.S., Waddie A.J., and Taghizadeh M.R. Diffractive optical elements for high gain lasers with arbitrary output beam profiles // Opt. Exp. 2007. V. 15. № 17. P. 10699–10704.
6. Takahashi K. Illumination system for superposing light beams one upon another on a surface using a projecting system having different focal point positions // U.S. patent 5719617. 1998.
7. CARL ZEISS SMT GMBH. Filter device for the compensation of an asymmetric pupil illumination // U.S. patent 8636386. 2014.
8. NIKON CORPORATION. Illumination optical system, exposure apparatus, device manufacturing method, compensation filter, and exposure optical system // U.S. patent 8908151. 2014.
9. Wei L., Li Y., Liu L. Detailed illuminator design for full field ArF lithography system with a method based on the fly’s eye // Proc. SPIE. 2012. V. 8550. P. 855032-1–855032-11.
10. Zhang F., Zhu J., Yue W., Wang J., Song Q., Situ G., Wyrowski F., and Huang H. An approach to increase efficiency of DOE based pupil shaping technique for off-axis illumination in optical lithography // Opt. Exp. 2015. V. 23. № 4. P. 4482–4493.
11. Hu Z., Zhu J., Yang B., Xiao Y., Zeng A., and Huang H. Test of diffractive optical element for DUV lithography system using visible laser // Proc. SPIE. 2012. V. 8557. P. 855709.
12. Childers J.E., Baker T., Emig T., Carriere J., and Himel M.D. Advanced testing requirements of diffractive optical elements for off-axis illumination in photolithography // Proc. SPIE. 2009. V. 7430. P. 74300S.
13. Welch K., Fedor A., Felder D., Childers J., and Emig T. Improvements to optical performance in diffractive elements used for off-axis illumination // Proc. SPIE. 2009. V. 7430. P. 743005.
14. Gerchberg R.W. and Saxton W.O. A practical algorithm for the determination of phase from image and diffraction plane pictures // Optik. 1972. V. 2. № 35. P. 237–246.
15. Kirkpatrick S., Gelatt C.D., and Vecchi M.P. Optimization by simulated annealing // Science. 1983. V. 220. № 4598. P. 671–680.
16. Yoshikawa N., Itoh M., and Yatagai T. Quantized phase optimization of two-dimensional Fourier kinoforms by a genetic algorithm // Opt. Lett. 1995. V. 20. № 7. P. 752–754.