ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-06-58-66

УДК: 621.383.45, 621.793.09

Photoresistors with charge-carrier exclusion for the 8–16-μm spectral range, made from n-CdxHg1-xTe heteroepitaxial structures

For Russian citation (Opticheskii Zhurnal):

Филатов А.В., Сусов Е.В., Карпов В.В. Фоторезисторы с эксклюзией носителей заряда для спектрального диапазона 8–16 мкм из гетероэпитаксиальных структур n-CdxHg1–xTe // Оптический журнал. 2018. Т. 85. № 6. С. 58–66. http://doi.org/10.17586/1023-5086-2018-85-06-58-66

 

Filatov A.V., Susov E.V., Karpov V.V. Photoresistors with charge-carrier exclusion for the 8–16-μm spectral range, made from n-CdxHg1-xTe heteroepitaxial structures [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 6. P. 58–66. http://doi.org/10.17586/1023-5086-2018-85-06-58-66

For citation (Journal of Optical Technology):

A. V. Filatov, E. V. Susov, and V. V. Karpov, "Photoresistors with charge-carrier exclusion for the 8–16-μm spectral range, made from n-CdxHg1-xTe heteroepitaxial structures," Journal of Optical Technology. 85(6), 359-366 (2018). https://doi.org/10.1364/JOT.85.000359

Abstract:

The functioning of photoresistors made from constant-composition n-CdxHg1−xTe (x=0.187–0.215) heteroepitaxial structures with variband layers obtained by molecular-beam epitaxy is studied in the nonequilibrium minority-carrier exclusion regime in a wide range of background radiation. The bias-voltage dependences of the electron concentration and charge-carrier lifetime in a 50×50  μm photoresistor pixel are determined at liquid-nitrogen temperature. It is established that the electron concentration in the exclusion regime decreases to a value close to the intrinsic charge-carrier concentration. A voltage sensitivity of more than 2.4×107  V/W and a specific detectivity of 5.3×1011  cm Hz1/2/W are obtained at 77 K and a planar viewing angle of 14° in the exclusion regime for photoresistors made from x=0.203 structures. It is shown that it is promising to use the minority-carrier exclusion regime to create high-efficiency fast-response photoresistors in the 16–17-μm spectral range, cooled no lower than liquid-nitrogen temperature.

Keywords:

n-CdxHg1-xTe heteroepitaxial structures, photoresistor, charge-carrier exclusion

Acknowledgements:

The authors are grateful to IFP SO RAN staff members Yu. G. Sidorov, S. A. Dvoretskiı˘, N. N. Mikhaı˘lov, and V. S. Varavin for creating and investigating epitaxial structures composed of Cdx Hg 1−x Te for the photoresistors.

OCIS codes: 230.5160, 040.3060, 160.6840

References:

1. T. Ashley and C. T. Elliott, “Non-equilibrium mode of operation for infrared detection,” Electron. Lett. 21, 451–452 (1985).
2. T. Ashley, C. T. Elliott, and A. M. White, “Infrared detection using minority-carrier exclusion,” Proc. SPIE 588, 62–68 (1986).
3. Z. Djurić, V. Jović, M. Matić, and Z. Jakšić, “IR photodetector with exclusion effect and self-filtering n+ layer,” Electron. Lett. 2, 929–931 (1990).
4. T. Ashley, C. T. Elliott, and A. T. Harker, “Non-equilibrium modes of operation for infrared detectors,” Infrared Phys. 26, 303–315 (1986).
5. Z. Djurić and J. Piotrowski, “Infrared photodetector with electromagnetic carrier depletion,” Opt. Eng. 31, 1955–1960 (1992).
6. T. Ashley, C. T. Elliot, and A. M. White, “Non-equilibrium devices for infrared detection,” Proc. SPIE 572, 123–132 (1985).
7. V. S. Varavin, S. A. Dvoretsky, V. I. Liberman, N. N. Mikhailov, and Yu. G. Sidorov, “Molecular beam epitaxy of high quality Hg 1-xCdxTe films with control of the composition distribution,” J. Cryst. Growth 159, 1161–1166 (1996).
8. A. V. Filatov, E. V. Susov, A. V. Gusarov, N. M. Akimova, V. V. Krapukhin, V. V. Karpov, and V. I. Shaevich, “Long-term stability of photoresistors for the spectral range 8–12 μm, fabricated from hetero-epitaxial CdHgTe structures obtained by molecular-beam epitaxy,” J. Opt. Technol. 76(12), 773–776 (2009) [Opt. Zh. 76(12), 49–54 (2009)].
9. A. V. Filatov, E. V. Susov, and V. V. Karpov, “Formation, nature, and annealing of defects in Cd0.2 Hg0.8 Te heteroepitaxial structures and photoresistors subjected to ion etching,” J. Opt. Technol. 84(4), 275–280 (2017) [Opt. Zh. 84(4), 67–72 (2017)].

10. M. A. Kinch, S. R. Borrello, and A. Simmons, “0.1-eV HgCdTe photoconductive detector performance,” Infrared Phys. 17(2), 127–135 (1977).
11. V. L. Bonch-Bruevich and S. G. Kalashnikov, Semiconductor Physics (Nauka, Moscow, 1977).
12. A. Rogalski, Infrared Detectors (Gordon and Breach, Amsterdam, 2000; Nauka, Novosibirsk, 2003).
13. J. Chol, I. Marfan, N. Munsch, P. Thorel, and P. Combette, Les détecteurs de rayonnement infrarouge, translated from French (Mir, Moscow, 1969).
14. R. M. Broudy and V. J. Mazurczyk, “(HgCd)Te photoconductive detectors,” in Semiconductors and Semimetals: Mercury Cadmium Telluride, R. K. Willardson and A. C. Deer, eds. (Academic, New York, 1981), Vol. 18, pp. 157–199.