ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-11-79-89

УДК: 535.8

Spatial and spectral correction of acousto-optical videospectrometer

For Russian citation (Opticheskii Zhurnal):

Шарикова М.О., Баландин И.А., Батшев В.И., Козлов А.Б. Пространственно-спектральная коррекция акустооптического видеоспектрометра // Оптический журнал. 2023. Т. 90. № 11. С. 79–89. http://doi.org/10.17586/1023-5086-2023-90-11-79-89

 

Sharikova М.O., Balandin I.A., Batshev V.I., Kozlov A.B. Spatial and spectral correction of acousto-optical videospectrometer [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 11. P. 79–89. http://doi.org/10.17586/1023-5086-2023-90-11-79-89

For citation (Journal of Optical Technology):

M. O. Sharikova, I. A. Balandin, V. I Batshev, and A. B. Kozlov, "Spatial and spectral correction of an acousto-optical imaging spectrometer," Journal of Optical Technology. 90 (11), 684-690 (2024). https://doi.org/10.1364/JOT.90.000684

Abstract:

Subject of study. Spatial-spectral distortions arising from acousto-optic diffraction, which must be taken into account when constructing an optical system and calibrating an acousto-optical device. Aim of study. Spatial and spectral calibration of videospectrometers based on acousto-optical tunable filters. Technique for equalizing the transmittance of the acousto-optical tunable filter in the entire working spectral range. Method. To obtain undistorted data, it is necessary to correct both spectral and spatial inhomogeneities. The calibration procedure consisted of hardware spectral tuning of the acousto-optical device and software-mathematical correction. The transmission function of the acousto-optical tunable filter is controlled by two parameters: frequency and power of ultrasound, which in turn are determined by the frequency and effective amplitude of the electrical signal. The frequency determines the position of the transmission function, that is, the wavelength of the acousto-optical tunable filter. The amplitude sets the ultrasound power, which determines the intensity of the radiation passed through the acousto-optical tunable filter. Full consideration of the non-uniformity of the transmission coefficient in the entire spectral range is achieved by post-processing. Main results. A technique for leveling the radiation power by changing the supplied ultrasound power is proposed. The developed software makes it possible to minimize the distortions introduced by acousto-optical tunable filters in order to visually evaluate information. The technique was tested on a near-infrared videospectrometer with double acousto-optic filtering. Practical significance. The presented method makes it possible to carry out hardware calibration of hyperspectral devices based on acousto-optical tunable filters, as well as to implement software correction of the displayed results in real time. The developed method is universal and suitable for other videospectrometers based on acousto-optic filtering. It will allow raising acousto-optic methods to a higher level both in the reliability of the data obtained and in the convenience of using such devices.

Keywords:

acousto-optics, acousto-optical tunable filter, acousto-optical videospectrometer, hyperspectral imaging, spatial and spectral calibration

Acknowledgements:

the work was carried out within the framework of the State Assignment of the STC UP RAS (project FFNS-2022-0010). The results were obtained using the equipment of the Center for Collective Use of the STC UP RAS

 

 

OCIS codes: 230.1040

References:
  1. Hennessy A., Clarke K., Lewis M. Hyperspectral classification of plants: A review of waveband selection generalisability // Remote Sens. 2020. V. 12. № 1. P. 113. https://doi.org/10.3390/rs12010113
  2. Carrasco O., Gomez R.B., Chainani A., et al. Hyperspectral imaging applied to medical diagnoses and food safety // Proc. SPIE. 2003. V. 5097. P. 215–221. https://doi.org/10.1117/12.502589
  3. Fischer C., Kakoulli I. Multispectral and hyperspectral imaging technologies in conservation: Current research and potential applications // Stud. Conserv. 2006. V. 51. P. 3–16. https://doi.org/10.1179/sic.2006.51.Supplement-1.3
  4. Gowen A.A., O’Donnell C.P., Cullen P.J., et al. Hyperspectral imaging — an emerging process analytical tool for food quality and safety control // Trends Food Sci. Technol. 2007. V. 18. № 12. P. 590–598. https://doi.org/10.1016/j.tifs.2007.06.001
  5. Li Q., He X., Wang Y., et al. Review of spectral imaging technology in biomedical engineering: Achievements and challenges // J. Biomed. Opt. 2013. V. 18. № 10. P. 100901. https://doi.org/10.1117/1.JBO.18.10.100901
  6. Machikhin A.S., Pozhar V.E. Spectral distortion correction method for image spectrometer [in Russian] // Instruments and experimental technique. 2009. № 6. P. 92–98.
  7. Spiclin Z., Katrasnik J., Bürmen M., et al. Geometric calibration of a hyperspectral imaging system // Appl. Opt. 2010. V. 49. № 15. P. 2813–2818. https://doi.org/10.1364/AO.49.002813
  8. Machikhin A.S., Shurygin A.V., Pozhar V.E. Spatial and spectral calibration of an acousto-optical spectrometer // Instrum. Exp. Tech. 2016. № 59. P. 692–697. https://doi.org/10.1134/S0020441216040217
  9. Katrašnik J., Pernuš F., Likar B. Radiometric calibration and noise estimation of acousto-optic tunable filter hyperspectral imaging systems // Appl. Opt. 2013. V. 52. № 15. P. 3526–3537. https://doi.org/10.1364/AO.52.003526
  10. Healey G.E., Kondepudy R. Radiometric CCD camera calibration and noise estimation // IEEE. Trans. Pattern. Anal. 1994. V. 16. № 3. P. 267–276. https://doi.org/10.1109/34.276126
  11. Bürmen M., Pernuš F., Likar B. Spectral characterization of near-infrared acousto-optic tunable filter (AOTF) hyperspectral imaging systems using standard calibration materials // Appl. Spectrosc. 2011. V. 65. № 4. P. 393–401. https://doi.org/10.1366/10-05987
  12. Yu K., Guo Q., Zhao H., et al. The calibration methods of geometric parameters of crystal for mid-infrared acousto-optic tunable filter-based imaging systems design // Materials. 2023. V. 16. № 6. P. 2341. https://doi.org/10.3390/ma16062341
  13. Rui X., Zhiping H., Hu Z., et al. Calibration of imaging spectrometer based on acousto-optic tunable filter (AOTF) // Proc. SPIE. 2012. V. 8527. P. 85270S. https://doi.org/10.1117/12.977434
  14. Goutzoulis A., Pape D.R., Kulakov S. Design and fabrication of acousto-optic devices. USA, Boca Raton, FL: CRC Press, 1994. 520 p.
  15. Molchanov V.Ya., Kitaev Yu.I., Kolesnikov A.I., et al. Theory and practice of modern acousto-optics [in Russian]. Moscow: MISis Publ., 2015. 458 p.
  16. Batshev V., Machikhin A., Gorevoy A., et al. Spectral imaging experiments with various optical schemes based on the same AOTF // Materials. 2021. № 14. P. 2984. https:// doi.org/10.3390/ma14112984
  17. Machikhin A.S., Batshev V.I., Pozhar V.E., et al. Minimizing aberrations of a near-infrared acousto-optic video spectrometer by optimizing the tunable filter parameters // J. Opt. Technol. 2019. V. 86. P. 794–798. https://doi.org/10.1364/JOT.86.000794
  18. Gorevoy A., Machikhin A., Martynov G., et al Computational technique for field-of-view expansion in AOTF-based imagers // Opt. Lett. 2022. V. 47. № 3. P. 585–588. https://doi.org/10.1364/OL.438374
  19. Balandin I.A., Sharikova M.O., Batshev V.I., et al. SWIR videospectrometer based on tandem AOTF [in Russian] // XVII Intrernat. Conf. Optical Methods of Flow Investigation — OMFI-2023 (Abstacts of reports). Moscow, Russia. June 26–30, 2023. P. 451—455.