DOI: 10.17586/1023-5086-2024-91-11-82-90
УДК: 621.383, 537.312
Modeling of electron mobility in organic optoelectronics materials
Беляев В.В., Чаусов Д.Н., Соломатин С.А., Кучеров Р.Н., Кумар С., Маргарян А.Л., Акопян Н.Г., Ермакова М.В., Беляев А.А., Ханна Г.М., Вечканов А.Р., Андреев А.В. Моделирование подвижности электронов в органических материалах оптоэлектроники // Оптический журнал. Т. 91. № 11. С. 82–90. http://doi.org/10.17586/1023-5086-2024-91-11-82-90
Belyaev V.V., Chausov D.N., Solomatin S.A., Kucherov R.N., Kumar S., Margaryan A.L., Hakobyan N.G., Ermakova M.V., Belyaev A.A., Hanna G.M., Vechkanov A.R., Andreev A.V. Modeling of electron mobility in organic optoelectronics materials [in Russian] // Opticheskii Zhurnal. V. 91. № 11. P. 82–90. http://doi.org/10.17586/1023-5086-2024-91-11-82-90
Subject of study. Organic optoelectronics materials with complex molecular structure; intermolecular and interatomic interaction. Aim of study. Development of intermolecular and interatomic interactions models for such materials to express components of organic molecules energy, its spatial distribution. Method. Method determines contribution of material molecules parts into charge mobility using diffusion model on delocalized polaron. In second method molecules energy and its spatial distribution are determined using atom–atomic potentials. Main results. Calculating contribution into interaction between molecules or their fragments and its change. In operating temperature range, there is predominance of static component of standard deviation of energy of molecule in lattice, which reduces charges mobility. When lattice perturbation energy corresponding to nonlocal electron-phonon interaction changes from 5 to 100 meV, mobility decreases by 17 times. Changing mutual molecules’ orientation angles changes intermolecular interaction energy by 0.1–1 eV, it is consistent with charge mobility modeling. Practical significance. The methods are applied in optoelectronics: photovoltaic cells, organic light-emitting diode and transistor, batteries, displays.
organic semiconductors, optoelectronics, electronic mobility, intermolecular interaction energy, diffusion model, interatomic potential method, displays, transparent electronics
Acknowledgements:this work was partially supported by the Russian Science Foundation, project № 22-19-00157 dated 05/16/2022
OCIS codes: 160.4890, 160.6000
References:1. Жукова М.О., Перлин Е.Ю. Поглощение света свободными электронами в полупроводниках. II. Процессы с участием акустических фононов // Оптический журнал. 2017. Т. 84. № 10. С. 3–6.
Zhukova M.O., Perlin E.Yu. Absorption of light by free electrons in semiconductors. II. Processes involving acoustic phonons // J. Opt. Technol. 2017. V. 84. № 10. P. 651–653. https://doi.org/10.1364/JOT.84.000651
2. Беляев В.В., Чилая Г.С. Жидкие кристаллы в начале XXI века. М.: ИИУ МГОУ, 2017. 142 с.
Belyaev V.V., Chilaya G.S. Liquid crystals at the beginning of the XXI century [in Russian]. Moscow: Moscow Region State University Editorial Office, 2017. 142 p.
3. Yuvaraj A.R., Renjith A., Kumar S. Novel electrondeficient phenanthridine based discotic liquid crystals // J. Molecular Liquids. 2018. V. 272. P. 583–589. https://doi.org/10.1016/j.molliq.2018.09.120
4. Vinayakumara D.R., Ulla H., Kumar S., et al. New fluorescent columnar mesogens derived from phenanthrene-cyanopyridone hybrids for OLED applications // Mat. Chem. Frontiers. 2018. V. 2. № 12. P. 2297–2306. https://doi.org/10.1039/C8QM00377G
5. Vinayakumara D.R., Kumar S., Adhikari A.V. Supramolecular columnar self-assembly of wedge-shaped rhodanine based dyes: Synthesis and optoelectronic properties // J. Molecular Liquids. 2019. V. 274. P. 215–222. https://doi.org/10.1016/j.molliq.2018.10.139
6. Казак А.В., Беляев В.В., Чаусов Д.Н. и др. Способ формирования флуоресцентных тонких пленок на основе смешанно-замещенного производного фталоцианина // Патент РФ № 2806720. Бюл. 2022. № 19.
Kazak A.V., Belyaev V.V., Chausov D.N., et al. Method for forming fluorescent thin films based on a mixedsubstituted phthalocyanine derivative // Russian Federation Patent № 2806720. Bull. 2022. № 19.
7. Hu P., He X., Jiang H. Greater than 10 cm2 V–1 s–1: A breakthrough of organic semiconductors for fieldeffect transistors // InfoMat. 3. № 6. P. 613–630. https://doi.org/10.1002/inf2.12188
8. Rolin C., Kang E., Lee J.-H., et al. Charge carrier mobility in thin films of organic semiconductors by the gated van der Pauw method // Nature Commun. 2017. V. 8. № 1. P. 14975. https://doi.org/10.1038/ncomms14975
9. Karl N. Charge-carrier mobility in organic crystals // Organic Electronic Materials: Conjugated Polymers and Low Molecular Weight Organic Solids. 2001. V. 41. P. 283–326. https://doi.org/10.1007/978-3-642-56425-3_8
10. Paterson A.F., Singh S., Fallon K.J., et al. Recent progress in high-mobility organic transistors: A reality check // Adv. Mat. 2018. V. 30. № 36. P. 1801079. https://doi.org/10.1002/adma.201801079
11. Sosorev A.Yu. Simple charge transport model for efficient search of high-mobility organic semiconductor crystals // Materials & Design. 2020. V. 192. P. 108730. https://doi.org/10.1016/j.matdes.2020.108730
12. Zhou Q., Yang J., Du M., et al. New near-infrared absorbing conjugated electron donor-acceptor molecules with a fused tetrathiafulvalene naphthalene diimide framework // J. Mat. Chem. C. 2022. V. 10. № 7. P. 2814–2820. https://doi.org/10.1039/D1TC04291B
13. Денисюк И.Ю., Мешков А.М., Акимов И.А. Электрофотографические фоторецепторы на основе сублимированных фталоцианинов // Оптический журнал. 2003. Т. 70. № 5. С. 3–7.
Denisyuk I.Y., Meshkov A.M., Akimov I.A. Electrophotographic photoreceptors based on sublimated phthalocyanines // J. Opt. Technol. 2003. V. 70. № 5. P. 303–305. https://doi.org/10.1364/JOT.70.000303
14. Казак А.В., Усольцева Н.В., Смирнова А.И. и др. Оптические свойства и надмолекулярная организация гольмиевого комплекса смешанно-замещенного фталоцианина в пленках Ленгмюра–Шеффера // Макрогетероциклы. 2015. Т. 8. № 3. С. 284–289.
Kazak A.V., Usol'tseva N.V., Smirnova A.I., et al. Optical properties and supramolecular organization of mix-substituted phthalocyanine holmium complex in Langmuir–Schaefer films [in Russian] // Macroheterocycles. 2015. V. 8. № 3. P. 284–289. https://doi.org/10.6060/mhc150972k
15. Israelachvili J.N. Intermolecular and surface forces. London: Academic Press, 2011. 645 p.
16. Chausov D.N., Suleymanova S., Kazak A.V., et al. Intermolecular interactions of layers octa-phenyl-2,3- naphthalocyaninato zinc // J. Phys.: Conf. Ser. 2021. V. 2056. № 1. P. 012014. https://doi.org/10.1088/1742- 6596/2056/1/012014
17. Dadivanyan A.K., Pashinina Y.M., Chausov D.N., et al. Mesogen molecules orientation on crystal surfaces // Molecular Crystals and Liquid Crystals. 2011. V. 545. № 1. P. 159–167. https://doi.org/10.1080/15421406.2011.571998
18. Казак А.В., Дубинина Т.В., Чаусов Д.Н. и др. Самоорганизация субфталоцианина бора A2B типа в плавающих слоях и пленках Ленгмюра–Шеффера // Жидкие кристаллы и их практическое использование. 2021. Т. 21. № 1. С. 72–80. https://doi.org/ 10.18083/LCAppl.2021.1.72
Kazak A.V., Dubinina T.V., Chausov D.N., et al. Selforganization of A2B type boron subphthalocyanine in floating layers and Langmuir–Schaeffer films [in Russian] // Liquid Crystals and their Application J. 2021. V. 21. № 1. P. 72–80.
19. Kazak A.V., Marchenkova V.A., Dubinina T.V., et al. Self-organization of octa-phenyl-2,3-naphthalocyaninato zinc floating layers // New J. Chem. 2020. V. 44. P. 3833–3837. https://doi.org/10.1039/c9nj06041c