ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-02-122-130

УДК: 621.383

Studies of the level of the internal background of infrared radiation on a photodetector in a cryostat

For Russian citation (Opticheskii Zhurnal):

Алдохин П.А., Новоселов А.Р., Хрящёв С.В., Добровольский П.П., Шатунов К.П. Исследования разными методами уровня внутреннего фона инфракрасного излучения на фотоприёмнике в криостате // Оптический журнал. 2024. Т. 91. № 2. С. 122–130. http://doi.org/10.17586/1023-5086-2024-91-02-122-130

 

Aldochin P.A., Novoselov A.R., Khryashchev S.V., Dobrovolsky P.P., Shatunov K.P. Studies of the level of the internal background of infrared radiation on a photodetector in a cryostat [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 2. P. 122–130. http://doi.org/10.17586/1023-5086-2024-91-02-122-130

For citation (Journal of Optical Technology):

-

Abstract:

Subject of study. Two methods for measuring the level of the internal background of infrared radiation (8–12 microns) on a cooled (up to 77K) photodetector with a cooled cylindrical diaphragm in a vacuum cryostat are presented. Aim of study. An effective method for measuring the level of internal background radiance on the photodetector in a cooled vacuum cryostat has been determined. Methodology. The first method is a direct measurement of the internal background radiance by a thermal imaging camera oriented to the surface of the photodetector, and the second method consists in a numerical simulation of the internal background radiance level. Main results. The direct measurement of the level of the photodetector internal background radiation by the thermal imaging camera oriented to the surface of the photodetector has been carried out for the first time. The measurements were carried out by two thermal imaging cameras: uncooled and cooled to the same temperature as the photodetector in the vacuum cryostat with the cylindrical cold diaphragm (77 K). It was found out that the level of the internal background radiation is significantly affected by IR radiation of the thermal imaging camera itself, increasing it. Also, the standard thermal imaging camera lens did not cut off the penetration of external IR radiation into the cryostat under study, where it was reflected from the edge of the diaphragm onto the thermal imaging camera photodetector. Thus, to measure the internal background radiation, it is necessary to use the cooled thermal imaging camera and a special lens that excludes the ingress of the outside IR radiation into the cryostat. Numerical modeling of the internal background radiation is an effective, sensitive to the specified parameters method: reducing the reflection coefficient of the inner surface of the cylindrical diaphragm by 3 times or introducing one internal additional diaphragm (lens hood) into it reduces the internal background radiation by at least 4 times. The method allows us to calculate the spatial distribution of the internal background radiation for different designs and forms of the cold diaphragm. Practical significance. Finding out the level of internal background radiation in the cryostat is necessary to optimize the shape and design of the diaphragm, which provides a minimum level of dark current and noise of photodetectors, and, consequently, the increase of the thermal imager sensitivity.

Keywords:

infrared radiation, internal background radiation, cooled cryostat, cold diaphragm

OCIS codes: 040.1240, 040.1490, 100.0100, 250.0040

References:

1.    Zverev A.V., Suslyakov A.O., Sabina I.V., Sidorov G.Y., Yakushev M.V., Kuzmin V.D., Varavin V.S., Craftsman V.G., Makarov Yu.S., Pride in A.V., Gorshkov D.V., Dvoretsky S.A., Vasiliev V.V., Sidorov Yu.G., Latyshev A.V., Kremis I.I. LWIR 384ґ288 FPA for the infrared range of 8–10 µm // Uspekhi Prikladnoi Fiziki. 2018. V. 6. № 3. P. 224–230. https://doi.org/10.1134/S1064226919090171

2.   Predein A.V., Sidorov Yu.G., Sabinina I.V., Vasiliev V.V., Sidorov G.Yu., Marchishin I.V High-performance 320ґ256 long-wavelength infrared photodetector arrays based on CdHgTe layers grown by molecular beam epitaxy // Optoelectronics, Instrumentation and Data Processimg. 2013. V. 49. № 5. P. 78–85.

3.   Vasiliev V.V., Ovsyuk V.N., Shashkin V.V., Aseev A.L. nfrared photodetector modules based on variband layers of HgCdTe and on structures with GaAs/AlGaAs quantum wells // Journal of Optical Technology. 2005. V. 72. № 6. P. 63–69. https://doi.org/10.1364/JOT.72.000474

4.   Patrashin A.I. The theoretical research of the background irradiation of an IR array with the specific cold shields // Applied Physics. 2011. № 3. P. 98–106.

5.   Patrashin A.I. IR array photodetector with the cold stop // Applied Physics. 2011. № 4. P. 65–70.

6.   Rogalski A. Progress in focal plane array technologies // Progress in Quantum Electronics. 2012. V. 36. P. 342–473.

7.    Kuznetsov N.S. Design and manufacturing technology of vacuum cryostats and docking with a gas cryogenic machine. Course of lectures. M: National University of Science and Technology "MISIS", 2021. 46 p.

8.   Bo Yi Song, Kai Luo, Hui Tao Yang, Kan Qin, Wang Li. Thermodynamic performance analysis of stirling engine with a nodal analysis method // Advanced Materials Research. 2013. V. 712–715. P. 1625–1629.

9.   Khitrova L.M., Lopukhin A.A., Savostin A.V., Marusova I.N., Kasatkin I.L. Cooled matrix infrared photodetector with diaphragm and diaphragm manufacturing method // Patent of the Russian Federation RU 2 377 694 C1. 2009.

10. Efimova Z.N., Efimov I.V., Mansvetov N.G., Vlasov P.V., Lopukhin A.A., Kiseleva L.V., Savostin A.V Infrared matrix photodetector with a cooled diaphragm and the method of manufacturing the diaphragm // Patent of the Russian Federation RU 2 571 171 C1. 2015.

11.  ZEMAX 13. Optical design program. User’s Manual. 2015. June 24. 805 p.

12.  Makarenko A.V., Pravdivtsev A.V., Yudin A.N. A method for estimating the internal parasitic radiation of optical paths of infrared systems. M: «Radio Engineering». Electromagnetic waves and electronic systems. 2009. № 12. P. 28–37.

13.  Novoselov A.R., Aldokhin P.A., Dobrovolsky P.P., Gusachenko A.V., Novgorodov B.N., Shatunov K.P., Churilov S.M. Investigation of infrared radiation reflection by diaphragms in thermal imaging devices // Optoelectronics, Instrumentation and Data Processimg. 2021. V. 57. № 3. P. 117–125. https://doi.org/10.15372/AUT20210313

14.  Kolosov M.P. Combating side interference in optoelectronic devices // Collection of articles edited by V.V. Tarasov and Yu.G. Yakushenkov. Number 1. M: «Altey and K», 2001. P. 161.

15.       Novoselov A.R., Dobrovolsky P.P., Khryashchev S.V., Shatunov K.P., Aldokhin P. A. Investigation of parasitic background IR radiation levels on a photodetector surface in a vacuum cryostat // Proceeding IEEE International Multi-Conference on Engieering, Computer and Science (SIBIRCON). 2022. P. https://doi.org/10.1109/SIBIRCON56155.2022.10016953