ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-05-33-42

УДК: 551.501.816; 551.510.411

Optical properties of HgCdTe epitaxial films doped with arsenic

For Russian citation (Opticheskii Zhurnal):
Ружевич М.С., Мынбаев К.Д., Фирсов Д.Д., Комков О.С., Варавин В.С., Ремесник В.Г., Якушев М.В. Оптические свойства эпитаксиальных пленок HgCdTe, легированных мышьяком // Оптический журнал. 2024. Т. 91. № 5. С. 33–42. http://doi.org/10.17586/1023-5086-2024-91-05-33-42

 

Ruzhevich M.S., Mynbaev K.D., Firsov D.D., Komkov O.S., Varavin V.S., Remesnik V.G., Yakushev M.V. Optical properties of HgCdTe epitaxial films doped with arsenic [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 5. P. 33–42. http://doi.org/10.17586/1023-5086-2024-91-05-33-42

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Epitaxial films of Hg0.7Cd0.3Te solid solutions grown by molecular beam epitaxy and doped with arsenic to obtain hole-type conductivity in order to form p–n junctions for the manufacture of photodetecting structures in the infrared range. Aim of study. Determination of the types and characteristics of defects formed during arsenic doping of epitaxial films of Hg0.7Cd0.3Te solid solutions grown by molecular beam epitaxy, and establishing the effect of doping on the disorder of the solid solution. Main results. With regard to the volume and the surface of the films, the high quality of the as-grown material and its further improvement as a result of two-stage activation thermal annealing are shown. The fact of activation of arsenic with the formation of shallow (7–8 meV) acceptor levels as a result of annealing has been established. The absence of side defects with the introduction of arsenic into the films during the growth and during the annealing was recorded. Practical significance. The effectiveness of doping epitaxial films of Hg0.7Cd0.3Te solid solutions with arsenic as an acceptor impurity for creating layers with hole conductivity in the process of manufacturing of photodiode structures has been demonstrated.

Keywords:

cadmium-mercury tellurides, doping, photoluminescence, photoreflection

OCIS codes: 120.7000, 250.5230, 260.3060

References:

1. Kopytko M., Rogalski A. New insights into the ultimate performance of HgCdTe photodiodes // Sensors and Actuators: A. Physical. 2022. V. 339. P. 113511. https://doi.org/10.1016/j.sna.2022.113511
2. Garland J.W., Grein C., Sivananthan S. Arsenic p-doping of HgCdTe grown by Molecular Beam Epitaxy (MBE): A solved problem? // J. Electron. Mater. 2013. V. 42. № 11. P. 3331–3336. https://doi.org/10.1007/s11664-013-2739-0
3. Gemain F., Robin I.C., Brochen S., et al. Arsenic complexes optical signatures in As-doped HgCdTe // Appl. Phys. Lett. 2013. V. 102. № 14. P. 124104. https://doi. org/10.1063/1.4801500
4. Tsen G.K.O., Sewell R.H., Atanacio A.J., et al. Incorporation and activation of arsenic in MBE-grown HgCdTe // Semicond. Sci. Technol. 2008. V. 23. № 1. P. 015014. https://doi.org/10.1088/0268-1242/23/1/015014
5. Zandian M., Chen A.C., Edwall D.D., et al. p-type arsenic doping of Hg1–xCdxTe by molecular beam epitaxy // Appl. Phys. Lett. 1997. V. 71. № 19. P. 2815–2817. https://doi.org/10.1063/1.120144
6. Selamet Y., Grein C.H., Lee T.S., et al. Electrical properties of in situ As doped Hg1–xCdxTe epilayers grown by molecular beam epitaxy // J. Vac. Sci. Technol. B. 2001. V. 19. № 4. P. 1488–1491. https://doi. org/10.1116/1.1374628

7. Wang H., Hong J., Yue F., et al. Optical homogeneity analysis of Hg1–xCdxTe epitaxial layers: How to circumvent the influence of impurity absorption bands? // Infr. Phys. Technol. 2017. V. 82. P. 1–7. http://dx.doi.org/10.1016/j.infrared.2017.02.007
8. Shao J., Chen L., Lü X., et al. Realization of photoreflectance spectroscopy in very-long wave infrared of up to 20 μm // Appl. Phys. Lett. 2009. V. 95. № 4. P. 041908. https://doi.org/10.1063/1.3193546
9. Ikonnikov A., Rumyantsev V., Sotnichuk M., et al. Photoconductivity spectroscopy of arsenic-related acceptors in HgCdTe // Semicond. Sci. Technol. 2023. V. 38. № 8. P. 085003. https://doi.org/10.1088/1361-6641/acda58
10. Robin I.C., Taupin M., Derone R., et al. Photoluminescence studies of arsenic-doped Hg1–xCdxTe epilayers // Appl. Phys. Lett. 2009. V. 95. № 20. P. 202104. https:// doi.org/10.1063/1.3263146
11. Yue F., Chu J., Wu J., et al. Modulated photoluminescence of shallow levels in arsenic-doped Hg1–xCdxTe (x  0.3) grown by molecular beam epitaxy // Appl. Phys. Lett. 2008. V. 92. № 12. P. 121916. https://doi. org/10.1063/1.2903499
12. Yue F.-Y., Chen L., Li Y.-W., et al. Influence of annealing conditions on impurity species in arsenic-doped HgCdTe grown by molecular beam epitaxy // Chinese Physics B. 2010. V. 19. № 11. P. 117106. https://doi.org/10.1088/1674-1056/19/11/117106
13. Murawski K., Majkowycz K., Kopytko M., et al. Photoluminescence study of As doped p-type HgCdTe absorber for infrared detectors operating in the range up to 8 μm // J. Electron. Mater. 2023. V. 52. № 11. P. 7038–7045. https://doi.org/10.1007/s11664-023-10516-5
14. Ruzhevich M.S., Mynbaev K.D. Photoluminescence in mercury cadmium telluride — a historical retrospective. Part II: 2004–2022 // Reviews on Advanced Materials and Technologies. 2022. V. 4. № 4. P. 17–38. https://doi.org/10.17586/2687-0568-2022-4-4-17-38
15. Chen X., Wang M., Zhu L., et al. Mid-infrared modulated photoluminescence mapping to investigate  in-plane distributions of bandedge transitions in Asdoped HgCdTe // Appl. Phys. Lett. 2023. V. 123. № 15. P. 151105. https://doi.org/10.1063/5.0164195
16. Войцеховский А.В., Дзядух С.М., Горн Д.И. и др. Состояние исследований в области создания униполярных барьерных структур МЛЭ n-HgCdTe со сверхрешетками в качестве барьера // Оптический журнал. 2024. Т. 91. № 2. С. 6–22. http://doi.org/10.17586/1023-5086-2024-91-02-6-22  Voitsekhovskii1 A.V., Dzyadukh S.M., Gorn D.I., et al. State of research in the field of creating unipolar barrier structures of n-HgCdTe MBE with superlattices as a barrier // J. Opt. Technol. 2024. V. 91. № 2.
17. Сидоров Г.Ю., Михайлов Н.Н., Варавин В.С. и др. Исследование влияния температуры крекинга мышьяка на эффективность его встраивания в пленки CdHgTe в процессе молекулярно-лучевой эпитаксии // Физика и техника полупроводников. 2008. Т. 42. Вып. 6. С. 668–671.  Sidorov G.Yu., Mikhaĭlov N.N., Varavin V.S., et al. Effect of the arsenic cracking zone temperature on the efficiency of arsenic incorporation in CdHgTe films in molecular–beam epitaxy // Semiconductors. 2008. V. 42. № 6. P. 651–654. https://doi.org/10.1134/ S1063782608060043
18. Швец В.А., Марин Д.В., Ремесник В.Г. и др. Параметрическая модель спектров оптических постоянных Hg1–xCdxTe и определение состава соединения // Опт. и спектроск. 2020. Т. 128. Вып. 12. С. 1815–1820. https://doi.org/10.21883/OS.2020.12.50315.349-20  Shvets V.A., Marin D.V., Remesnik V.G., et al. Parametric model of the optical constant spectra of Hg1–xCdxTe and determination of the compound composition // Opt. and Spectrosc. 2020. V. 128. № 12. P. 1948–1953. https://doi.org/10.1134/S0030400X20121042
19. Izhnin I.I., Mynbaev K.D., Voitsekhovsky A.V., et al. Background donor concentration in HgCdTe // OptoElectronics Rev. 2015. V. 23. № 3. P. 200–207. https:// doi.org/10.1515/oere-2015-0029
20. Комков О.С., Якушев М.В. Фотомодуляционная оптическая спектроскопия варизонных гетероструктур CdHgTe // Физика и техника полупроводников. 2023. Т. 57. Вып. 6. С. 426–431. https://doi.org/10.21883/FTP.2023.06.56469.33k  Komkov O.S., Yakushev M.V. Photomodulation optical spectroscopy of CdHgTe graded band gap heterostructures // Semiconductors. 2023. V. 57. № 6. P. 414–419.
21. Ружевич М.С., Мынбаев К.Д., Баженов Н.Л. и др. Оптические свойства и разупорядочение плёнок HgCdTe, выращенных методом молекулярно-лучевой эпитаксии // Оптический журнал. 2024. Т. 91. № 2. С. 23–33. https://doi.org/10.17586/1023-5086-2024-91-02-23-33  Ruzhevich M.S., Mynbaev K.D, Bazhenov N.L., et a. Optical properties and disorder of HgCdTe films grown by molecular beam epitaxy // J. Opt. Technol. 2024. V. 91. № 2.
22. Ружевич М.С., Фирсов Д.Д., Комков О.С. и др. Фотолюминесценция эпитаксиальных пленок Cd0.3Hg0.7Te, легированных мышьяком // Физика и техника полупроводников. 2023. Т. 57. Вып. 6. С. 491–494. https://doi.org/10.21883/FTP. 2023.06.56479.5375  Ruzhevich M.S., Firsov D.D., Komkov O.S., et al. Photoluminescence of arsenic doped epitaxial films of Cd0.3Hg0.7Te // Semiconductors. 2023. V. 57. № 6. P. 484–487.
23. Becker C.R., Latussek V., Pfeuffer-Jeschke A., et al. Band structure and its temperature dependence for type–III HgTe/Hg1–xCdxTe superlattices and their semimetal constituent // Phys. Rev. B. 2000. V. 62. № 15. P. 10353. https://doi.org/10.1103/PhysRevB. 62.10353
24. Majkowycz K., Murawski K., Kopytko M. New insight into defect energy levels in HgCdTe // Infr. Phys. Technol. 2024. V. 137. P. 105126. https://doi.org/10.1016/j. infrared.2024.105126
25. Swartz C.H., Tomkins R.P., Giles N.C., et al. Fundamental material studies of undoped, In-doped, and Asdoped Hg1–xCdxTe // J. Electron. Mater. 2004. V. 33. № 6. P. 728–736. https://doi.org/10.1007/s11664-004-0074-1
26. Motyka M., Sęk G., Janiak F., et al. Fourier-transformed photoreflectance and fast differential reflectance of HgCdTe layers. The issues of spectral resolution and Fabry–Perot oscillations // Measurement Sci. and Technol. 2011. V. 22. № 12. P. 125601. https://doi.org/10.1088/0957-0233/22/12/125601
27. Shao J., Chen L., Lu W., et al. Backside-illuminated infrared photoluminescence and photoreflectance: Probe of vertical nonuniformity of HgCdTe on GaAs // Appl. Phys. Lett. 2010. V. 96. № 12. P. 121915. https://doi.org/10.1063/1.3373595