ITMO
en/ en

ISSN: 1023-5086

en/

ISSN: 1023-5086

Научно-технический

Оптический журнал

Полнотекстовый перевод журнала на английский язык издаётся Optica Publishing Group под названием “Journal of Optical Technology“

Подача статьи Подать статью
Больше информации Назад

УДК: 21474

Математическая модель датчика напряжений на основе волоконно-оптической брэгговской решетки с гауссовым профилем

Ссылка для цитирования:
Khalid K.S., Zafrullah M., Bilal S.M., Mirza M.A. Математическая модель датчика напряжений на основе волоконно-оптической брэгговской решетки с гауссовым профилем // Оптический журнал. 2012. Т. 79. № 10. С. 77–85.

 

Khalid, K. S.; Zafrullah, M.; Bilal, S. M.; Mirza, M. A. Simulation and analysis of Gaussian apodized fiber Bragg grating strain sensor  [in English] // Opticheskii Zhurnal. 2012. V. 79. № 10. P. 66–76.

Ссылка на англоязычную версию:

K. S. Khalid, M. Zafrullah, S. M. Bilal, and M. A. Mirza, "Simulation and analysis of Gaussian apodized fiber Bragg grating strain sensor," Journal of Optical Technology. 79(10), 667-673 (2012).  https://doi.org/10.1364/JOT.79.000667

Аннотация:

In this paper, the performance of various apodization profiles (uniform, hyperbolic tangent and gaussian) for un-chirped Fiber Bragg Grating is investigated. Apodization techniques are used to get optimized reflection spectra with high side lobe suppression. The simulations are done by solving coupled mode equations in MATLAB using transfer matrix method which explains the relationship between the guided modes. The result shows that Gaussian profile suppresses side lobe level much more efficiently than uniform and hyperbolic tangent profiles. Gaussian apodized Fiber Bragg Grating is used to indicate strain by producing wavelength shift. MATLAB and Opti-grating result gives an idea about the efficiency of the suggested scheme to analyze strain measurements by giving a linear response.

Ключевые слова:

fiber Bragg grating, coupled mode theory, coupled mode equations, transfer matrix method, apodized fiber Bragg grating, wavelength division multiplexing

Коды OCIS: 060.0060, 060.3735

Список источников:

1. Singh J., Khare A., Kumar S. Fiber Bragg grating modeling, characterization and optimization with different index profiles // International Journal of Engineering Science and Technology. 2010. V. 2. № 9. P. 4463–4468.
2. Singh J., Khare A., Kumar S. Design of Gaussian apodized fiber Bragg grating and its applications // International Journal of Engineering Science and Technology. 2010. V. 2. № 5. P. 1419–1424.
3. Ugale S.P., Mishra V. Optimization of fiber Bragg grating length for maximum reflectivity // IEEE Intern. Conf. on  Communications and Signal Processing (ICCSP). 2011. P. 28–32.
4. Rebola J.L., Cartazo A.V.T. Performance optimization of Gaussian apodized fiber Bragg grating filters in WDM systems // Journal of Lightwave Technology. 2002. V. 20. № 8. P. 1537–1544.
5. Sahu P.K., Kumar S., Gowre C., Mahapatra S., Biswas J.C. Numerical modeling and simulation of fiber Bragg grating based devices for all-optical communication network // IFIP Intern. Conf. on Wireless and Optical Communications Networks. 2006.
6. Sun N.H., Liau J.J., Kiang Y.W., Lin S.C., Ro R.Y., Chiang J.S., Chang H.W. Numerical analysis of apodized fiber Bragg gratings using coupled mode theory // Progress in Electromagnetics Research. 2009. V. 99. P. 289–306.
7. Tahir B.A., Ali J., Rahman R.A. Strain measurements using fibre Bragg grating sensor // Am. J. Appl. Sci. (Special Issue). 2005. P. 40–48. ISSN. 1546-9239.
8. Hill K.O., Meltz G. Fiber Bragg grating technology fundamentals and overview // Journal of Lightwave Technology. 1997. V. 15. № 8. P. 1263–1274.
9. Gong J.M., MacAlpine J.M.K., Chan C.C., Jin W., Zhang M., Liao Y.B. A novel wavelength detection technique for fiber Bragg grating sensors // IEEE Photonics Technology Letters. 2002. V. 14. № 5. P. 678–680.
10. Frazao O., Romero R., Rego G., Marques P.V.S., Salgado H.M., Santos J.L. Sampled fiber Bragg grating sensors for simultaneous strain and temperature measurement // Electronics Letters. 2002. V. 38. № 14. P. 693–695.
11. Lu H., Hussain R., Zhou M., Gu X. Fiber Bragg grating sensors for failure detection of flip chip ball grid array in four-point bend tests // IEEE Sensors Journal. 2009. V. 9. № 4. P. 457–463.
12. Carvalho J.C.C., Sousa M.J., Sales C.S., Junior, Costa J.C.W.A., Frances C.R.L., Segatto M.E.V. A new acceleration  technique for the design of fibre gratings // Opt. Exp. 2006. V. 14. № 2. P. 10715–10725.
13. Phing H S., Ali J., Rahman R.A., Tahir B.A. Fiber Bragg grating modeling, simulation and characteristics with different grating lengths // Journal of Fundamental Sciences. 2007. V. 3. № 2. P. 167–175.
14. Othonosa A. Fiber Bragg gratings // Review of Scientific Instruments. 1997. V. 68. № 12. P. 4309–4341.
15. Kang L.H., Kim D.K., Han J.H. Estimation of dynamic structural displacements using fiber Bragg grating strain sensors // Journal of Sound and Vibration. 2007. V. № 3. P. 534–542.

16. Kanga D.H., Park S.O., Hong C.S., Kim C.G. The signal characteristics of reflected spectra of fiber Bragg grating sensors with strain gradients and grating lengths // NDT&E International. 2005. V. 38. № 8. P. 712–718.
17. Yulianti I., Supa’at A.S.M., Idrus S.M., Al-hetar A.M. Simulation of apodization profiles performances for unchirped fiber Bragg gratings // IEEE Intern. Conf. on Photonics (ICP). 2010. P. 1–5.
18. Erdogan T. Fiber grating spectra // Journal of Lightwave Technology. 1997. V. 15. № 8. P. 1277–1294.
19. Prabhugoud M., Peters K. Modified transfer matrix formulation for Bragg grating strain sensors // Journal of Lightwave Technology. 2004. V. 22. № 10. P. 2302–2309.
20. Meltz G., Morey W.W. Bragg grating formation and germanosilicate fiber photosensitivity // Intern. Workshop on Photo induced Self-Organization Effects in Optical Fiber. Quebec City, Quebec, 1991. Proc. SPIE. V. 1516. P. 185–199.