ITMO
en/ en

ISSN: 1023-5086

en/

ISSN: 1023-5086

Научно-технический

Оптический журнал

Полнотекстовый перевод журнала на английский язык издаётся Optica Publishing Group под названием “Journal of Optical Technology“

Подача статьи Подать статью
Больше информации Назад

УДК: 520.626.07, 523.9-739

History of extreme ultraviolet solar measurements in XX–XXI centuries: from balloons to the International Space Station as instrumental platforms

Ссылка для цитирования:

G. Schmidtke History of extreme ultraviolet solar measurements in XX–XXI centuries: from balloons to the International Space Station as instrumental platforms [на англ. яз.] // Оптический журнал. 2015. Т. 82. № 3. С. 73–86.

 

G. Schmidtke History of extreme ultraviolet solar measurements in XX–XXI centuries: from balloons to the International Space Station as instrumental platforms [in English] // Opticheskii Zhurnal. 2015. V. 82. № 3. P. 73–86.

Ссылка на англоязычную версию:

G. Schmidtke, "History of extreme ultraviolet solar measurements in XX–XXI centuries: from balloons to the International Space Station as instrumental platforms," Journal of Optical Technology. 82(3), 185-196 (2015). https://doi.org/10.1364/JOT.82.000185

Аннотация:

The Sun was one of the central points for observations as long as human cultures are known. After researchers observed the extension of the solar rainbow spectrum towards shorter wavelengths with increasing altitude they started measurements of the solar ultraviolet spectrum from balloons in 1934. The acquisition of spectra in the extreme ultraviolet and soft X-ray spectral regions was beginning after 1946 using photographic recordings aboard rockets. However, it took six more years to achieve good spectral resolution below about 220 nm because servomechanisms had to be developed to fairly accurately point the spectrographs to the Sun during the rocket flight. Another big step forward was achieved by the application of photoelectric recording technology and by using satellites as a platform to observe qualitatively the strong variability of the solar ultraviolet irradiance on short-, medium- and long-term scales. Until the end of the past century these measurements have been strongly impeded by the inherent degradation of the EUV instruments with time. Since there is progress solving this serious problem, measurements with sufficient radiometric accuracy allow composing the data available to the first set of ultraviolet data covering a period of eleven years. Based on the sophisticated instrumentation verified in space, future EUV measurements of the solar spectral irradiance on the International Space Station are promising accuracy levels of about 5%. Added by low-cost equipment on-line measurements will allow providing data needed in ionospheric modeling for correcting propagation delays of navigation signals from space to Earth. Adding ultraviolet airglow and auroral emission measurements the impact of space weather on the ionosphere can be studied and also be used deriving more detailed correction procedures for the evaluation of Global Navigation Satellite System (GNSS) signals.

Ключевые слова:

solar EUV irradiance, degradation of the EUV instruments, EUV airglow and auroral emission, impact of space weather on the ionosphere

Благодарность:

Автор выражает благодраонсть Сергею В. Авакяну за подготовку этой статьи к публикации.

Коды OCIS: 040.0040, 050.0050, 120.0120

Список источников:

1. http://en.wikipedia.org/wiki/Regener-Tonne.
2. Kiepenheuer K.O. On the relations between ionosphere, sunspots and solar corona // Ann. Astrophys. 1945. V. 8. P. 210–211.
3. Hinteregger H.E. Rocket spectra of the chromosphere // Proc. Symposium on the Solar Spectrum. Utrecht in August 1963. P. 179.
4. Rense W.A. Intensity of Lyman-alpha line in the solar spectrum // Phys. Rev. 1953. V. 91. P. 299–302.
5. Tousey R. The extreme ultraviolet spectrum of the sun // Space Science Rev. 1963. V. 2. P. 3–69.
6. Schmidtke G. Soller-Blendensysteme als Kollimatoren und Beugungsfilter // Zeitschrift angew. Phys. 1968. V. 25. P. 314–318.

7. Schweizer W., Schmidtke G. High-resolution extremeultraviolet solar spectrum recorded with a diffractionfilter spectrograph // Astrophys. J. 1971. V. 169. L. 27–L29.
8. Hinteregger H.E. Telemetering monochromator measurements of extreme ultraviolet radiation // Space Astrophys / Ed. by Liller W. McGraw Hill, 1961. P. 34–95.
9. Hinteregger H.E., Hall L.A., Schmidtke G. Solar XUV radiation and neutral particle distribution in July 1963 thermosphere // Space Res.V. 1965. P. 1175–1190.
10. Neupert W.M., Behring W.E., Lindsay W.C. The solar spectrum from 50 Å to 400 Å // Space Res. IV. 1964. P. 719–729.
11. Schmidtke G., Eparvier F.G., Solomon S.C., Tobiska W.K., Woods T.N. Introduction to the TIGER (Thermospheric/Ionospheric Geospheric Research) Program // Adv. Space Res. 2006. V. 37. P. 194–198. doi:10.1016/j.asr.2005.02.088.
12. Hinteregger H.E. Representation of solar EUV fluxes for aeronomical applications // Adv. Space Res. 1981. V. 1. № 12. P. 39–52.
13. Hinteregger H.E., Fukui K., Gilson B.R. Observational reference and model data on solar EUV from measurements on AEE // Geophys. Res. Lett. 1981. V. 8. P. 1147–1150.
14. Solomon S.C., Bailey S.M., Woods T.N. Effect of solar soft X-rays on the lower ionosphere // Geophys. Res. Lett. 2001. V. 28. P. 2149–2152.
15. Hall L.A., Hinteregger H.E. Solar radiation in the extreme ultraviolet and ist variation with solar rotation // J. Geophys. Res. 1970. V. 75. № 34. P. 6959–6565.
16. Timothy A.F., Timothy J.G. Long-term intensity variations in the solar He II Lyman alpha line // J. Geophys. Res. 1970. V. 75. № 34. P. 6950–6958.
17. Kocharov G.E., Charikov Yu.E., Lazutkov V.P., Matveev G.A., Nitsora Yu.N., Savchenko M.I., Skorodumov D.V. Soft X-rays in the 00:18 UT solar flare on April 22, 1994 // Phys. Chem. Earth C. 2000. V. 25. P. 405–406.
18. Nusinov A.A., Kazachevskaya T.V., Katyushina V.V. A flux of EUV emission measured on-board the “CORONAS” artificial satellites near minimum and maximum of the 23rd cycle of solar activity // Adv. Space Res. 2006. V. 37. P. 246–252.
19. Schmidtke G. Modeling of the solar extreme ultraviolet irradiance for aeronomic applications // Encyclopedia of physics. XLIX/7: geophysics III. Part VII / Ed. by Rawer K. 1984. P. 1–55.
20. Kazachevskaya T.V., Katyushina V.V. Variations in the H Lyα intensity in solar activity cycles from measurements onboard satellites and rockets // Phys. Chem. Earth C. 2000. V. 25. P. 425–427.
21. Ivanov-Kholodny G.S. Solar EUV quasi-biannual variations // Phys. Chem. Earth C. 2000. V. 25. P. 433–435.
22. Mikhailov A.V. Aeronomic estimates of solar EUV fluxes using incoherent scatter observations // Phys. Chem. Earth C. 2000. V. 25. P. 505–509.
23. Nusinov A.A. Ionosphere as a natural detector for investigations of solar EUV flux variations // Adv. Space Res. 2006. V. 37. P. 426–432.
24. Judge D.L., Ogawa H.S., McMullin D.R., Gangopadhyay P. The SOHO CELIAS/SEM data base // Phys. Chem. Earth C. 2000. V. 25. P. 417–420.
25. Bailey S.M., Woods T.N., Eparvier F.G., Solomon S.C. Observations of the solar soft X-ray irradiance by the student nitric oxide explorer // Adv. Space Res. 2006. V. 37. P. 209–218.
26. Woods T.N., Bailey S.M., Eparvier F.G., Lawrence G., Lean J., McClintock B., Roble R., Rottmann G.J., Solomon S.C., Tobiska W.K., White O.R. TIMED Solar EUV experiment // Phys. Chem. Earth C. 2000. V. 25. P. 393–396.
27. Woods T.N., Francis G.E., Bailey S.M., Chamberlin P.C., Lean J., Rottmann G.J., Solomon S.C., Tobiska W.K., Woodraska D.L. The Solar EUV Experiment (SEE): mission overview and first results // J. Geophys. Res. 2005. V. 110. P. A01312. doi:10.1029/2004JA010765.
28. Woods T.N., Eparvier F.G. Solar ultraviolet variability during the TIMED mission // Adv. Space Res. 2006. V. 37. P. 219–224. doi: 10.1016/j.asr.2004.10.006.
29. Woods T.N. Recent advances in observations and modeling of solar ultraviolet and X-ray spectral irradiance // Adv. Space Res. 2008. V. 42. P. 895–902. doi:10.1016/j.asr.2007.09.026.
30. Schmidtke G., Nikutowski B., Jacobi Ch., Brunner R., Erhardt Ch., Knecht S., Scherle J., Schlagenhauf J. Solar EUV irradiance measurements by the Auto-Calibrating EUV Spectrometers (SolACES) aboard the International Space Station (ISS) // Solar Phys. 2014. V. 289. P. 1863–1883. doi: 10.1007/s11207-013-0430-5.
31. Woods T.N., Eparvier F.G., Hock R., Jones A.R., Woodraska D., Judge D.L., Didkovsky L., Lean J., Mariska J., Warren H., McMullin D., Chamberlin Ph., Berthiaume G., Bailey S., Fuller-Rowell T., Sojka J., Tobiska W.K., Viereck R. Extreme ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of science objectives, instrument design, data products, and model developments // Solar Phys. 2012. V. 275. P. 115–143.

32. Hochedez J.-F., Schmutz W., Nesladek M., Stockman Y., Schühle U., BenMoussa A., Koller S., Haenen K., Berghmans D., Defise J.-M., Halain J.-P., Theissen A., Delouille V., Slemzin V., Gillotay D., Fussen D., Dominique M., Vanhellemont F., McMullin D., Kretschmar M., Mitrofanov A., Nicula B., Wauters L., Roth H., Rozanov E., Rüedi I., C.Wehrli, Amano H., Van der Linden R., Zhukov A., Clette F., Koizumi S., Mortet V., Remes Z., Petersen R., D‘Olieslaeger M., Roggen J., Rochus P. LYRA, a solar UV radiometer on Proba2 // Adv. Space Res. 2006. V. 37. P. 303–312.
33. Kotov Yu.D., Kochemasov A.V., Glyanenko A.S., Yurov V.N., Arkhangelsky A.I. PHOKA experiment: Description of the equipment and first results // Solar System Res. 2011. V. 45. P. 153–161.
34. Pflug K., Kotov Yu.D., Schmidtke G. EUV-PHOKA Measurements of Solar Spectral Irradiance Variations in the EUV/XUV Region // J. Moscow Phys. Soc. 1996. V. 6. P. 337–346.
35. Schmidtke G., Brunner R., Eberhard D., Halford B., Klocke U., Knothe M., Konz W., Riedel W.-J., Wolf H. SOL–ACES: Auto-calibrating EUV/UV spectrometers for measurements onboard the International Space Station // Adv. Space Res. 2006. V. 37. P. 273–282.
36. Unglaub C., Jacobi Ch., Schmidtke G., Nikutowski B., Brunner R. EUV-TEC proxy to describe ionospheric variability using satellite-borne solar EUV measurements: First results // Adv. Space Res. 2011. V. 47. P. 1578–1584.
37. Schmidtke G., Seidl P., Wita C. Airglow-solar spectrometer instrument (20–700 nm) aboard the San Marco D/L satellite // Applied Optics. 1985. V. 24. P. 3206–3213.
38. Schmidtke G., Doll H., Wita C., Chakrabarti S. Solar EUV/UV and equatorial airglow measurements from San Marco-5 // J. Atmosph. Terr. Phys. 1991. V. 53. P. 781–785.
39. Schmidtke G. Phase lag of atomic oxygen density increase in the thermosphere // J. Geophys. Res. 1975. V. 80. P. 1367–1369.
40. Fischer F., Schmidtke G. Rocket-borne auroral EUV measurements // J. Geophys. Res. 1980. V. 85. P. 4716–4720.
41. Fischer F., Stasek G., Schmidtke G. Identification of auroral EUV emission // Geophys. Res. Lett. 1980. V. 7. № 11. P. 1003–1006.
42. Schmidtke G., Baker K.D., Stasek G., Wita C., Seidl P. Rocket-borne EUV-visible emission measurements // Adv. Space Res. 1983. V. 2. Iss. 10. P. 103–106.
43. Theile B., Boström R., Dumbs A., Grossmann K. U., Krankowsky D., Lämmerzahl P., Marklund G., Neske E., Schmidtke G., Wilhelm K. In situ measurements of heating parameters in the auroral ionosphere // Planetary and Space Science 1981. V. 29. P. 455–468.
44. Tobiska W.K., Gladstone G.R., Chakrabarti S., Shepherd M.G., McConnell J.C., Link R., Schmidtke G., Stasek G. FUV-Visible photometric imaging of aurorae // J. Geophys. Res. 1993. V. 98. P. 17525–17535.
45. Schmidtke G. Diffraction filters in XUV spectroscopy // Applied Optics 1970. V. 9. P. 447–450.
46. Bruner E. C., Acton L. W., Brown W. A., Salat S. W., Franks A., Schmidtke G., Schweizer W., Speer R. J. X-ray spectrometer spectrograph telescope system, Proceed. Society Photo-Optical Instrumentation Engineers // Proceed. SPIE. 1979. V. 184. P. 270–277.
47. Schmidtke G. Infrared-XUV telescope for multipurpose applications // Applied Optics. 1977. V. 16. P. 244–247.
48. Schmidtke G., Henneberg P., Hager K.-H., Busch F., Reinhardt D. Parabolic telescope and spectrometer combination // Applied Optics. 1980. V. 19. P. 1822–1832.
49. Seidl P., Schmidtke G., Acton L.W. Diffraction properties of hydrogen-phthalate-crystals in the 01 –2 nm region // Applied Optics. 1977. V. 16. P. 578–571.
50. Crifo J. F., Seidl P., Delaboudiniere J.P., Schmidtke G. Compact resonance absorption spectrometer to monitor the profile of the solar He 58.4 nanometer line // Rev. Sci. Instrum. 1980. V. 51. P. 321–327.
51. Hsieh K.C., Keppler E., Schmidtke G. Forward photoemission from thin carbon foils // Applied Optics. 1979. V. 18. P. 3732–3733.
52. Schmidtke G. Photoabsorption cross sections: Effect of radiation hardening // Phys. Chem. Earth C. 2000. V. 25. P. 583–585.
53. Avakyan, S.V., Andreev, E.P., Afanas’ev, I.M., Leonov, N.B., Savushkin A.V., Serova A.E. Creating of the permanent space patrol of ionizing solar radiation in innovative telescopes and instrumentation for solar astrophysics // Proc. SPIE. 2002. V. 4853. P. 600–611.
54. Avakyan S.V. Solar patrol: Absolute measurements of ionizing solar radiation // Adv. Space Res. 2006. V. 37. P. 297–302.
55. Schmidtke G. Today knowledge of the solar EUV output and the future needs for more accurate measurements for aeronomy // Planet. Space Sci. 1978. V. 26. P. 347–353.