DOI: 10.17586/1023-5086-2024-91-12-70-83
УДК: 681.783.2
Разработка методики синтеза панорамных оптических систем на основе зеркально-линзовых компонентов
Полный текст на elibrary.ru
Соломатин В.А., Путилин Н.А., Торшина И.П., Путилин А.Н. Разработка методики синтеза панорамных оптических систем на основе зеркально-линзовых компонентов // Оптический журнал. 2024. Т. 91. № 12. С. 70–83. http://doi.org/10.17586/1023-5086-2024-91-12-70-83
Solomatin V.A., Putilin N.A., Torshina I.P., Putilin A.N. Development of the methods for synthesis of panoramic optical systems based on panoramic annular lenses [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 12. P. 70–83. http://doi.org/10.17586/1023-5086-2024-91-12-70-83
Предмет исследования. Панорамные зеркально-линзовые компоненты и оптические системы на их основе. Цель работы. Разработка методики синтеза панорамных зеркально-линзовых компонентов и синтез передающих оптических систем для них. Метод. Методика синтеза панорамных компонентов разрабатывалась исходя из обеспечения требуемого хода действительных лучей. Созданная программа синтеза панорамного компонента была интегрирована с программой моделирования и аберрационного анализа оптических систем, разработанной авторами. Основные результаты. Разработана новая методика, обеспечивающая синтез панорамных зеркально-линзовых компонентов с заданными светосилой и максимальным углом обзора (в том числе при 2ωmax > 180°). Синтезированные компоненты обладают при этом минимальным размером слепой зоны вблизи оптической оси. Рассмотрены вопросы компенсации аберраций компонента при синтезе передающих оптических систем. Практическая значимость. Рассчитан вариант панорамной оптической системы для видимого диапазона, отличающийся высокой компактностью. Повышена технологичность конструкции панорамных компонентов. Результаты синтеза сверхширокоугольной (угловое поле до 2ω = 190°) и сверхсветосильной (относительное отверстие до 1:0,53) оптической системы для инфракрасного диапазона могут быть использованы, в частности, при разработке разновысотных построителей местной вертикали для низкоорбитальных спутников.
панорамные зеркально-линзовые компоненты, панорамная оптическая система, синтез оптических систем, оптимизация оптических систем
Благодарность:коллектив авторов выражает благодарность Куртову Анатолию Борисовичу, анализ идей которого лёг в основу данной статьи
Коды OCIS: 110.0110, 230.0230
Список источников:1. Прудников Н. В., Шлишевский В. Б. Панорамные оптико-электронные устройства кругового и секторного обзора // Вестник СГУГиТ (Сибирского государственного университета геосистем и технологий). 2016. № 1 (33). С. 148–161.
Prudnikov N.V., Shlishevsky V.B. Panoramic opticalelectronic devices for circular and sectoral viewing [in Russian] // Bulletin of SGUGiT (Siberian State University of Geosystems and Technologies). 2016. № 1 (33). P. 148–161.
2. Федосеев В.И., Колосов М.П. Оптико-электронные приборы ориентации и навигации космических аппаратов: учеб. пособие. М.: Логос, 2007. 248 с.
Fedoseev V.I., Kolosov M.P. Optical-electronic devices for orientation and navigation of spacecraft: a textbook [in Russian]. Moscow: Logos, 2007. 248 p.
3. Мельников А.В., Соломатин В.А., Рабовский А.Е. Построитель местной вертикали с панорамным зеркально-линзовым объективом // Фотоника. 2017. № 6. С. 86–96.
Melnikov A.V., Solomatin1 V.A., Rabovskii A.E. A device constructing local vertical with a panoramic mirror-lens system // Photonics. 2017. №. 6. P. 86–96.
4. Соломатин В.А. Способ построения местной вертикали и устройство для его осуществления // Патент РФ № RU2664914C1 Бюл. 2018. № 24.
Solomatin V.A. Method for constructing a local vertical and a device for its implementation // RF Patent № RU2664914C1 Bull. 2018. № 24.
5. Куртов А.В. Разработка и исследование оптических систем с зеркально-линзовым панорамным компонентом // Автореф. канд. дис. Москва: Московский государственный университет геодезии и картографии (МИИГАиК), 2001. 144 с.
Kurtov A.V. Development and research of optical systems with mirror-lens panoramic component [in Russian] // Diss. Ph.D. tech. Sci. Moscow: Moscow State University of Geodesy and Cartography (MIIGAiK), 2001. 144 p.
6. Gao S., Yang K., Shi H. et al. Review on panoramic imaging and its applications in scene understanding // IEEE Transactions on Instrumentation and Measurement. 2022. V. 71. P. 1–34. https://doi.org/10.48550/arXiv.2205.05570
7. Архипова Л.Н., Багдасаров А.А., Багдасарова О.В. и др. Панорамные системы кругового обзора // Оптический журнал. 2016. Т. 83. № 6. С. 20–31.
Arkhipova L.N., Bagdasarov A.A., Bagdasarova. O.V. et al. Circular-scan panoramic systems // Journal of Optical Technology. 2016. V. 83. № 6. P. 342–350. https://doi.org/10.1364/JOT.83.000342
8. Урусова М.В. Принципы построения панорамных оптических систем оптико-электронных приборов на базе оптических панорамных блоков // Автореф. канд. дис. Москва: Московский энергетический институт (технический университет), 2007. 200 с.
Urusova M.V. Principles of constructing panoramic optical systems of optical-electronic devices based on optical panoramic units [in Russian] // Diss. Ph.D. tech. Sci. Moscow: Moscow Energy Institute (Technical University), 2007. 200 p.
9. Yuan H.Z., Wang B.P., Zhang J. et al. A novel method for geometric correction of multi-cameras in panoramic video system // 2010 International Conference on Measuring Technology and Mechatronics Automation. IEEE, 2010. V. 1. P. 248-251. https://doi.org/10.1109/ ICMTMA.2010.677
10. Li W., Li Y.F. Single-camera panoramic stereo imaging system with a fisheye lens and a convex mirror // Optics express. 2011. V. 19. № 7. P. 5855-5867. https:// doi.org/10.1364/OE.19.005855
11. Григорьев А.А., Мартынов В.Н., Якушенкова Т.И. и др. Обзорно-панорамные оптико-электронные системы визуализации и преобразования изображений // Оптико-электронные системы визуализации и преобразования изображений. Вып. 2. М.: ОАО «Циклон», 2007. С. 38–52.
Grigoriev A.A., Martynov V.N., Yakushenkova T.I. and others. Panoramic optical-electronic systems for visualization and image conversion [in Russian] // Optical-electronic systems for visualization and image conversion. V. 2. Moscow: OJSC “Cyclone”. 2007. P. 38–52.
12. Куртов А.В, Соломатин В.А. Панорамный зеркально-линзовый объектив // Патент РФ № RU2185645C2. Опубл. 20.07.2002.
Kurtov A.V., Solomatin V.A. Panoramic mirror-lens objective// RF Patent № RU2185645C2. Bull. 2002.07.20.
13. Куртов А.В. Панорамный объектив «Сакура» // Изв. вузов. Приборостроение. 2000. № 3. С. 129–140.
Kurtov A.V. Panoramic lens “Sakura” // News of universities. Instrumentation. 2000. № 3. P. 129–140.
14. Cheng R., Wang K., Lin S. et al. Panoramic annular localizer: Tackling the variation challenges of outdoor localization using panoramic annular images and active deep descriptors // 2019 IEEE Intelligent Transportation Systems Conference (ITSC). 2019. P. 920–925. https://doi.org/10.1109/ITSC.2019.8917508
15. Zhou Q., Tian Y., Wang J. et al. Design and implementation of a high-performance panoramic annular lens // Applied Optics. 2020. V. 59. № 36. P. 11246–11252. https://doi.org/10.1364/AO.412471
16. Wang J., Liang Y., Xu M. Design of panoramic lens based on ogive and aspheric surface // Optics Express. 2015. V. 23. № 15. P. 19489–19499. https://doi. org/10.1364/OE.23.019489
17. Huang Z., Bai J., Hou X. Design of panoramic stereo imaging with single optical system // Infrared and Laser Engineering. 2012. V. 20. № 6. P. 6085–6096. https://doi.org/10.1364/OE.20.006085
18. Luo Y., Huang X., Bai J. et al. Compact polarizationbased dual-view panoramic lens // Applied Optics. 2017. V. 56. № 22. P. 6283–6287. https://doi.org/ 10.1364/AO.56.006283
19. Gao S., Sun L., Jiang Q. et al. Compact and lightweight panoramic annular lens for computer vision tasks // Optics Express. 2022. V. 30. № 17. P. 29940–29956. https://doi.org/10.1364/OE.465888
20. Путилин Н.А., Дубынин С.Е., Путилин А.Н. и др. Искажения виртуального изображения в схемах дисплеев дополненной реальности на волноводных голограммах: возникновение тангенциальной дисторсии и хроматизма увеличения // Оптический журнал. 2024. Т. 91. № 3. С. 79–94. http://doi.org/10.17586/1023-5086-2024-91-03-79-94
Putilin N.A., Dubynin S.E., Putilin A.N., Kopenkin S.S., Borodin Yu.P. Distortions of the virtual image in augmented reality displays based on waveguide holograms: the arising of tangential distortion and magnification chromatism [in Russian] // J. Opt. Technol. 2024. V. 91(3). P. 181–190. https://doi.org/10.1364/ JOT.91.000181